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Hardware Lab Walk-Through 
In this lab, we’ll go over all the steps involved in gaining root access on a Wi-Fi camera. The 
device in question is the Tapo C100 by TP-Link. We’ve provided all the tools necessary to 
complete the lab, which include the following: 

• PCBite probe kit 
• Tigard 
• Multimeter 

PCBite probe kit 
The PCBite kit is what you’ll be using to analyze the components of the camera’s board. Typically, 
to make a connection to a test point (a pin, pad, port, etc.) on a printed circuit board (PCB), you’d 
have to solder onto the board. The benefit of this kit is that you can make those connections 
without soldering. 

The kit includes four kinds of parts: 

• Clips 
• Legs 
• Probe pins 
• A metal plate 

Clips 
You can use the clips to hold the board during testing. To use a clip in that way, you’ll have to 
open the clip by squeezing the crosshatch grip and pulling down. 

https://www.amazon.com/Tapo-security-indoor-pet-camera/dp/B0866S3D82?th=1
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Ideally, you’ll want to place clips on the corners of the board to give yourself as much access to 
its parts as possible. 

Legs/pins 
The probe pins can be screwed onto the nonmagnetic ends of legs and, once you’re happy with 
their position, can be lightly applied to whichever test point on the board is of interest to you. 
Because the sharp pins on the probes are retractable and the ends of the legs are weighted, it’s 
possible to make a relatively solid connection to the board’s test points. You’ll have noticed the 
two other pins on each probe. Those are for connections to the wires of the Tigard, which we’ll 
go over next. 

Tigard 
The Tigard is a multiprotocol, multivoltage hardware hacking tool. This orange board is what 
allows us to communicate over serial when connected to debug ports. The Tigard supports 
universal asynchronous receiver/transmitter (UART), JTAG, Serial Wire Debug (SWD), Inter-
Integrated Circuit (i2c), and Serial Peripheral Interface (SPI) communication. In this lab, we’ll be 
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focusing on UART communication, which is what the set of pins with the yellow headers on the 
Tigard are for. 

The Tigard comes with multiple wires. For this lab, we’ll want to use the set of four with the red, 
black, green, and white wires. You’ll notice that at the end of each wire is a label. The red is 
labeled VTGT, for voltage; the black, GND, for ground; the green, TX, for transmit; and the white, 
RX, for receive. The ones of interest to us are ground, transmit, and receive. To power the Tigard, 
simply connect it to the laptop via the USB-C to USB-A cable. 

Multimeter 
Some hackers prefer to use logic analyzers or even oscilloscopes to identify UART interfaces; 
however, that can be overkill. For our use case, we really need only a bit of knowledge about 
UART and our multimeter. There are many modes for multimeters with many use cases, but we’ll 
need to use only three: continuity mode, resistance mode, and direct current (DC) mode. 

 

UART the only one for me 
As mentioned above, UART stands for universal asynchronous receiver/transmitter. Basically, 
it’s a protocol that uses asynchronous serial communication from a transmitter to a receiver. 
Asynchronous here basically means that the one transmitting and the one receiving need to 
agree on the rate at which data will be exchanged before it’s exchanged. 
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Once a data rate (baud rate) is agreed upon, a message can be sent through a transmission 
channel (TX) to a receiving channel (RX).[1] 

 

That may seem abstract now, but what if the data being sent over serial could be converted to 
ASCII characters? What if you could send system commands to a device over serial? And what 
if that device were running, for example, a Linux operating system? You’d basically achieve what 
could be thought of as SSH over hardware. In other words, you’d have a shell! 

So if finding UART means finding a shell, what exactly should you be looking for? Well, typically, 
UART is used for debugging during development. Debug interfaces on devices usually consist 
of one of the three P’s: pins, pads, or ports. UART interfaces usually consist of three or four 
pins/pads: ground (GND), receive (RX), and transmit (TX) and sometimes voltage (VCC). So 
basically, we’re going to poke around on any pins, pads, or ports that we think could be the UART 
interface (particularly ones in groups of three or four). Once we find a likely candidate, we’ll 
measure its voltage output. 

This is the time to take a good look at the board. Check out both sides. Make note of any pins, 
pads, or ports. Make note of any chips that may be of interest. Heck, if you’re curious about the 
camera’s schematics, look for the FCC ID of the camera and see if you can’t find it on 
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https://fccid.io. (But you’ll have to use your own internet, as the laptops we’ve provided don’t have 
it.) 

 

If you’ve taken your time analyzing the board, you may have a few thoughts about where the 
UART interface might be. You may be tempted to think the pins next to the power jack would be 
a good candidate. 

https://fccid.io/
https://fccid.io/
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It’s super common for devices to still have UART pins even after they’ve hit production (you’re 
very likely to see them in routers, for example). However, if you look at the black plastic bit that 
serves as the face of the camera, you’ll notice that its back has a little black block with six holes 
in it. And those six holes would align perfectly with the pins on the board, right? And then the 
PCB that the black block is attached to—what is its purpose? It turns out that the board is actually 
where the camera’s speaker and light are, which means that those six pins provide power for the 
light and signals for the speaker. So chances are we can rule out those pins altogether. On to the 
next candidate. 

On the other side of the board, you’ll see the system on a chip (SoC), the T31 by Ingenic 
Semiconductor. 
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This is the brains of the camera: the CPU, the memory, the video processor, and other 
peripherals. It even has a vector processor for deep learning operations (according to the 
camera’s marketing, it’s used for facial recognition). But that isn’t what’s interesting to us (even 
though it is a pretty cool chip). 

Those four pads right next to the SoC look like a perfect candidate for a UART interface. Chances 
are during development, the pads had pins on them to make debugging easier. Now that the 
device is in production, however, those pins would have no utility. Keeping them on would just 
cost TP-Link extra money. 

Only one way to find out! 

Multimeter time 
It’s time to break out that multimeter. If this is your first time using a multimeter, don’t worry— 
we’ll be going over everything step by step, and if you have any questions, you can feel free to 
ask us! You’ll want to plug the black probe (negative) into the COM terminal and the red probe 
(positive) into the red terminal with the V and Ω symbol. (This is actually important, because if 
you plug your probes into the wrong terminal, you could damage the multimeter.) What we want 
to do is find out which of the pads is ground, receive (RX), transmit (TX), or voltage (VCC). 
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Let’s start with finding ground. Turn the dial to continuity mode, which is the setting with the sound 
wave symbol. This setting is going to tell us whether there’s low resistance in the circuit that the 
probes are creating. We’ll place the black probe on a grounded point and the red probe on each 
of the pads one by one. If you hear a beep, it’s because there’s low resistance between the pad 
and ground, which means that the pad is grounded. 

Places where you can find a grounded point for testing include all of the board’s screws; if your 
device has a Wi-Fi antenna, that’s going to be grounded. If it has a DC barrel jack, one of the 
pins on it will be grounded. Even the SD card slot on the other side of the board will be grounded. 
So hacker’s choice: With the power off, pick your ground and place your black probe on it. Then 
test the pads with the red probe. Once you’ve found your ground pad, make note of it. 

Next we’ll move on to the other pads. While the device is still powered off, we can determine 
which of the pads is VCC by testing them against a known point of voltage. Let’s return to the 
pins of the DC jack, one of which is ground and one of which is VCC. You might think that the 
VCC pin of the barrel jack would be a good candidate, but there’s something weird about the 
C100: Its DC barrel jack takes 9 volts and then sends that through a voltage regulator to power 
the rest of the board at 3.3 volts. That means that a direct connection to the VCC pin of the barrel 
jack won’t return the measurements we’d need to determine whether a point in a 3.3-volt circuit 
is connected to VCC. 

Luckily, there’s a flash chip on the other side of the board! 
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Why does that matter? SOIC8 chips like this one are typically used for flash memory, to store the 
device’s firmware. The chips often use a serial protocol, SPI, to communicate, and they usually 
have a little circle in their upper-left corner to indicate their correct orientation. But how does that 
help us? 

Well, when an SOIC8 chip is configured to use the SPI interface, that circle is meant to point out 
the chip-select (CS) pin…which means that on the right is a VCC pin! 
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This kind of chip may not always be configured to use SPI. However, the configuration is common 
enough in embedded systems that it’s more likely than not to be the case. So with that in mind, 
let’s take some measurements! 

Switch the dial of the multimeter to resistance mode (Ω). A good place to start is 20,000 ohms. 
We won’t worry too much about the meanings of the different numbered settings, as they’re not 
super relevant to the task at hand. Suffice it to say that the higher the number, the higher the 
resolution of our measurements. 

When measuring resistance against VCC, you’ll want to first place the red probe on the known 
point of voltage and then use the black probe to test the pins. Remember: The lower the number, 
the lower the resistance. When measuring against VCC, that means that resistance of around 0–
1 ohms is sufficient to indicate that you’ve found a point connected to VCC. You’re going to have 
to remove the clips from the board to get that measurement. It’s going to be a little finicky, but it 
should be possible. 

Once you’ve found your VCC, it’s time to look for the transmit pad. This is the channel through 
which the device will communicate with our receive channel. A good way to identify transmit is to 
look for fluctuations in voltage during boot time. That’s because when a device has boot logging 
enabled, which is often the case, the voltage fluctuates during boot as text is printed to the 
console. So you’ll want to turn the dial to DC mode, which is indicated by a V next to a dotted 
line beneath a straight line. A good setting in this case would be 20. Then put your black probe 
on ground and the red on your prospective transmit pad and power on the device. If you’re having 
trouble juggling your probes while powering on the device, you can try using the multimeter 
probes in the PCBite kit. 

Once you’ve found your TX, you’ll also, by process of elimination, have found RX. But for 
posterity’s sake, here’s a good method for using a multimeter to identify receive: Follow the same 
process you used to find TX, but instead of looking for fluctuations in voltage, look for a silent 
unchanging reading that’s only slightly lower than the circuit’s voltage. 

Getting a shell 
Now that you’ve identified all your pads, it’s time to break out the Tigard! As a reminder, the pins 
with the yellow headers are for UART, and we’ll be using the set of four wires—one red, one 
black, one green, and one white labeled VTGT, GND, TX, and RX, respectively. If you look closely 
at the UART pins on the Tigard, you’ll see that each one is labeled with the corresponding wire. 
To start, mount the wires and plug in your Tigard. Then set up the PCBite legs and pins with the 
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associated wires on the Tigard, and place the corresponding GND, TX, and RX pins on each of 
the UART pads. 

Note the little switch next to the USB-C port on the Tigard. That switch is how you’ll specify the 
voltage that the Tigard will run at. You’ll want to make sure that it matches the voltage of the 
board; otherwise, you won’t be able to communicate with the board and could potentially even 
damage it. 

We’re almost ready to go! The last step before we can actually talk to the board is running the 
software that will allow us to interface with the camera via serial over USB. There are several 
options for this, such as screen, PuTTY, and picocom—and some terminals even have built-in 
serial support. The tool we’ll be using for this demonstration, though, is minicom. 

Open your terminal and run minicom --help to see which flags are accepted. The ones we’re 
interested in are the device flag (-D) and the baud rate flag (-b), both of which are pretty 
straightforward. If you’ve plugged the Tigard into your laptop’s USB port and are running Linux 
or macOS, it will create a device that you can access via the /dev directory. On a Windows 
machine, the device would appear as one of the COM ports, which can be viewed in the Device 
Manager. 

Since you’re on Linux, you’ll be looking for a device that begins with /dev/tty. Specifically, the 
Tigard will be either /dev/ttyACM0 or /dev/ttyUSB0. You can confirm which is available to you 
by running ls /dev/tty* in the terminal and looking for either of the two in the output. Once 
you’ve confirmed your device, you can run the command minicom -D /dev/ttyACM0 (or 
/dev/ttyUSB0). 

Recall that our two communicating devices need to agree on a rate of data transfer in order to 
talk to each other. Well, that’s what the baud rate is. At the moment, we don’t know what the baud 
rate of the UART is, but there are ways we could manually figure it out. However, to save some 
time, we could also just guess! There are a lot of different baud rates, but a handful of them are 
used the most frequently. 

• 110 
• 150 
• 300 
• 1200 
• 2400 
• 4800 
• 9600 
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• 19200 
• 38400 
• 57600 
• 115200 
• 230400 
• 460800 
• 921600 

That does narrow things down significantly, but we can narrow things down even further. In my 
experience, the most common baud rate for UART is 115200. That is always my default guess, 
and only a handful of times has it been incorrect. 

So finally, your minicom command should look like this: 

sh minicom -D /dev/ttyACM0 -b 115200 

WE’RE IN 😎💻 

 

There’s only one problem. 
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We only have a login prompt. No shell. What can we do? 

Think like a hacker 
One of the most valuable things a hacker has is that little voice in their head that refuses to take 
“no” for an answer—the voice that responds with “Oh yeah? We’ll see.” Right now, that login 
prompt is telling us “no.” Even the C100 and TP-Link don’t want us to get a root shell. So let’s 
see if we can. 

One of my favorite ways to root a smart device is to mess with its bootloader. It’s the first program 
run on such a device and is responsible for setting up the device’s clock, memory, and peripherals 
and loading the kernel into executable memory. There are many different kinds of bootloaders, 
but there’s one in particular that I enjoy messing with: U-Boot. If we can find a way to drop in to 
U-Boot’s shell during startup, chances are we’ll be able to do everything from dumping the 
firmware to flashing our own firmware. We may even be able to mount the filesystem in memory, 
which would give us our root shell. 

We can check whether the C100 is running U-Boot by enabling minicom’s logging functionality. 
On Linux, you can do that by pressing ctrl+a and then pressing l. You’ll then be prompted to 
name the log file and specify where minicom should write it. After that, just reboot the camera 
and capture all of its boot logs. 

Once you’ve finished capturing the logs, you can start checking them out. Somewhere around 
the top of the log file, you should see something like this: 
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All right, we’ve got U-Boot! That gives us a pretty solid lead. 

There are some stipulations, of course. For instance, we’ll run into problems if the vendor (TP-
Link) has modified U-Boot in a way that removes all of its cool functionality, and there has to be 
a way to halt the boot process and drop in to the U-Boot shell. Sometimes it’s possible to halt the 
boot process by pressing enter at the right time, before the kernel has been loaded. Give it a 
try—it’s worked on certain versions of the C100 firmware. 

It’s also fairly common for TP-Link to use password-protected bootloaders on its devices. In that 
case, instead of just repeatedly smashing enter during boot, you would type in the password, 
hit enter, and then be dropped in to the U-Boot shell. Luckily for us, previous research on other 
Tapo devices has shown that TP-Link tends to reuse its bootloader passwords on many devices, 
with tpl and slp being the most common. So go ahead and give those a try. 

If it becomes annoying to unplug the camera and plug it back in to restart the boot, hopefully, 
we’ve provided you with a surge protector that you can use to switch it on and off more easily. 

https://drmnsamoliu.github.io/shell.html
https://drmnsamoliu.github.io/shell.html
https://drmnsamoliu.github.io/shell.html
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Another strategy that I often use is connecting the DC jack pins on the back of the device to my 
multimeter probe for a split second to short the power and restart the boot, as shown below. 

 

Just a quick tap should be fine and won’t hurt anything. 

Unfortunately, neither of those tactics work on the firmware version used on the camera. 

So does that mean we’re out of options? Of course not! 

It turns out that the C100 actually has two bootloaders. The primary bootloader is stored in ROM 
or protected flash and is responsible for low-level system initialization, and the secondary 
bootloader resides in flash memory and handles firmware updates, security validation, and 
loading of the filesystem. What we want to do is interrupt the secondary bootloader so that we 
can drop in to the U-Boot shell. But how can we do that? 

Remember our little buddy the SOIC8 chip? That’s our flash memory chip, right? What if we were 
to mess with it during the boot process? It turns out that by grounding the CS pin, we can render 
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the secondary bootloader unable to find the kernel at the memory location it was given. In that 
case, U-Boot will try to find the kernel about four more times before it just peters out and drops 
us in to our U-Boot shell! 
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You can use one of your multimeter probes to ground the CS pin just at the time that you start 
seeing the probe spend 4 ms messages. To ground the pin, just lightly bridge the CS pin to the 
pin next to it and then hold it until you see the shell prompt. This will definitely be a bit finicky. 
Personally, I’ve found it easier to use a SIM card pin to ground the CS pin. Eventually, though, 
you’ll get it. 

Now that you’re in the U-Boot shell, what can you do? Quite a bit, actually. If you run the help 
command, you’ll see that TP-Link has left us quite a bit of functionality to work with. Particularly 
interesting commands include the md, mm, and mw commands, which allow us to mess with 
memory addresses. Honestly, we could probably use them to just dump the firmware, but I’ll 
leave figuring that out to the curious. What we’re here for is root! 

If you run the printenv command, you’ll see all the environment variables that U-Boot reads to 
finish the boot process. You may need to shrink your terminal’s text to fit everything, which you 
can do by pressing ctrl+-. Alternatively, you can enable line wrapping in minicom by pressing 
ctrl+a and w. 

So what are we looking for here? How do we parse this information? Well, if you’re familiar with 
Linux or macOS, you may have experience with configuring your terminal’s shell. You can think 
of these variables like the aliases you might put in your .bashrc file. But which of these “aliases” 
is of interest to us? Well, do you see the init variable in the bootargs commands? Its value, 
/etc/preinit, is pointing to a file on the Linux filesystem. That means that preinit is likely a 
script that is run after the secondary bootloader has completed its boot process and the filesystem 
has been mounted. 

Now, what if we could change this value and make it point to a binary instead of to 
/etc/preinit? If you read the output of the help command, you might have noticed that 
technically, we could do that through the setenv command. And what if we were to point it to 
/bin/bash, for example? Well, since the C100 doesn’t have the bash binary, it wouldn’t do very 
much. But maybe there’s another shell that we could use—one that comes installed on practically 
every Linux installation? Indeed, the /bin/sh binary is the most likely candidate for an 
alternative. So let’s try setting init to /bin/sh! 

setenv bootargs console=ttyS1,115200n8 mem=45M@0x0 rmem=19M@0x2d00000 
root=/dev/mtdblock6 rootfstype=squashfs spdev=/dev/mtdblock7 noinitrd 
init=/bin/sh 

Then, to run our new boot command, we’ll just run boot and... 
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We’re root! 😱🎉🎉🎉 
From this point on, we can do whatever we want with the system, whether that’s dumping the 
firmware, putting our own backdoored firmware on the camera, or extracting the filesystem and 
reverse-engineering the libraries and binaries to find vulnerabilities. Heck, if you want to see 
something really cool, run this command:  

sh /etc/preinit && cat /tmp/etc/uc_conf/user_management 

This will mount the filesystem and then display the content of a config file containing credentials 
used to authenticate to the camera’s video stream over HTTP! Our team has yet to confirm 
whether those credentials are generated dynamically on first boot or are simply hard-coded and 
changed during firmware upgrades. But either way, the exposure of that information could have 
real implications for people’s privacy. No bueno, to say the least. 

What can be done for the C100? 

Because the flash chip is a hardware component, there’s not much that can be done to modify it. 
But maybe it would be possible to modify the bootloader such that it more gracefully handles the 
inability to find kernel images? Maybe it’d be a good idea to not hard-code the credentials for 
sensitive services like video streams? Removing U-Boot’s ability to read/write memory and set 
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environment variables from its shell wouldn’t hurt either. The point is that there are many potential 
improvements that could be made here. 

Unfortunately, the solution to this issue is unclear, since few of the mitigation options we’ve just 
run through could be applied to devices already in people’s homes. What we do know is this: The 
vulnerability still exists on more recent firmware versions, though TP-Link has modified the 
firmware such that the operating system will reboot after a few minutes if a root shell has been 
entered. However, that change in itself doesn’t prevent the extraction of video stream credentials 
or the dumping of the firmware, for that matter. 

Indeed, there are many more improvements to be made to the C100 and the Tapo line in general, 
if the wealth of security research being done on that tech is any indication. Regardless, we hope 
you enjoyed hacking with us! 

 

1. Diagram from https://microtechtronics.com/theory/communication/uart/ ↩  
  

https://microtechtronics.com/theory/communication/uart/
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About ISE 
ISE is a Baltimore-headquartered independent security firm that provides clients with proven strategies for enhancing 
their security posture. Since its founding in 2005, ISE has helped startups, multinational companies, and members 
of the Fortune 100 secure their products and fix thousands of vulnerabilities. Whether ISE is performing a manual 
vulnerability assessment, threat modeling, a design analysis, or a custom evaluation, the team takes a hands-on 
approach and considers the client’s unique security needs. 

ISE’s security analysts assess clients’ products from the perspective of potential attackers, drawing from their 
understanding of real-world attacks as well as experience in information technology, product development, 
cryptography, and cloud services. In each assessment, the team provides tailored recommendations for protecting 
the client’s assets, hardening its existing technologies, and securing its infrastructures—and works with the client’s 
developers to improve its overall security.  

In addition to its assessment work, ISE conducts independent research to stay at the forefront of the ever-changing 
world of information security. The team also shares its expertise through application security training workshops 
(“hackalongs”) and runs the IoT Village, which advocates for advancing security in the internet-of-things industry.  

No system, no matter how secure or well designed, can be considered entirely resistant to attack. However, with 
robust security services provided by an experienced team, a system can often mitigate the effects of any attacks 
against it and stay one step ahead of potential adversaries.  

ISE appreciates the confidence placed in us as a trusted security partner. Please don’t hesitate to contact us for 
additional assistance with your security needs. 

Independent Security Evaluators, LLC 

4901 Springarden Drive 

Suite 300 

Baltimore, MD 21209 

(443) 270-2296 

contact@ise.io 

https://www.ise.io/ 

 

https://www.ise.io/research/
https://www.iotvillage.org/
mailto:contact@ise.io
https://www.ise.io/

