
S O H O p e l e s s l y B r o k e n : T h e I m p l i c a t i o n s
o f P e r v a s i v e V u l n e r a b i l i t i e s i n S O H O

R o u t e r P r o d u c t s .

Jacob Holcomb
Associate Security Analyst

Independent Security Evaluators

Speaker Information

•  Who? Jacob Holcomb
 Twitter: @rootHak42
 Blog: http://infosec42.blogspot.com

•  What? Security Analyst @ ISE
•  Why? I <3 exploiting computer code

Why is this information relevant to you?

•  Everyone in the audience is a consumer of
SOHO networking equipment.

•  100% of routers we evaluated were
vulnerable to exploitation.

Acknowledgements

•  Independent Security Evaluators
-  Jacob Thompson, Alex Morrow, Stephen Bono, and

Kedy Liu

•  Paul Asadoorian – PaulDotCom
-  SANS Webcast: Hacking Embedded Systems (No

Axe Required)

• Craig Heffner - http://www.devttys0.com/
– Great resource for embedded device hacking

READ OUR PAPERS!

•  Independent Security Evaluators
–  Exploiting SOHO Routers -

http://securityevaluators.com/content/case-studies/routers/
soho_router_hacks.jsp

–  Exploiting SOHO Router Services -
http://securityevaluators.com/content/case-studies/routers/
soho_service_hacks.jsp

Topics

•  What are SOHO devices
•  Players in the market
•  Router Technology
•  Testing Methodology
•  Exploit Research and Development
•  Mitigations

Holy hole in the router, Batman!
1.  CVE-2013-0126: Cross-Site Request Forgery
2.  CVE-2013-2644: FTP Directory Traversal
3.  CVE-2013-2645: Cross-Site Request Forgery
4.  CVE-2013-2646: Denial of Service
5.  CVE-2013-3064: Unvalidated URL Redirect
6.  CVE-2013-3065: DOM Cross-Site Scripting
7.  CVE-2013-3066: Information Disclosure
8.  CVE-2013-3067: Cross-Site Scripting
9.  CVE-2013-3068: Cross-Site Request Forgery
10.  CVE-2013-3069: Cross-Site Scripting
11.  CVE-2013-3070: Information Disclosure
12.  CVE-2013-3071: Authentication Bypass
13.  CVE-2013-3072: Unauthenticated Hardware Linking
14.  CVE-2013-3073: SMB Symlink Traversal
15.  CVE-2013-3074: Media Server Denial of Service
16.  CVE-2013-3083: Cross-Site Request Forgery
17.  CVE-2013-3084: Cross-Site Scripting
18.  CVE-2013-3085: Authentication Bypass
19.  CVE-2013-3086: Cross-Site Request Forgery
20.  CVE-2013-3087: Cross-Site Scripting
21.  CVE-2013-3088: Authentication Bypass
22.  CVE-2013-3089: Cross-Site Request Forgery
23.  CVE-2013-3090: Cross-Site Scripting
24.  CVE-2013-3091: Authentication Bypass
25.  CVE-2013-3092: Failure to Validate HTTP

Authorization Header
26.  CVE-2013-3095: Cross-Site Request Forgery
27.  CVE-2013-3096: Unauthenticated Hardware Linking
28.  CVE-2013-3097: Cross-Site Scripting

29.  CVE-2013-4654: SMB Symlink Traversal
30.  CVE-2013-4655: SMB Symlink Traversal
31.  CVE-2013-4656: SMB Symlink Traversal
32.  CVE-2013-4657: SMB Symlink Traversal
33.  CVE-2013-4658: SMB Symlink Traversal
34.  CVE-2013-4659: Multiple Buffer Overflows
35.  CVE-2013-3365: Multiple Command Injection
36.  CVE-2013-3366: Backdoor
37.  CVE-2013-3367: Backdoor
38.  CVE-2013-3516: Cross-Site Request Forgery/Token

Bypass
39.  CVE-2013-3517: Cross-Site Scripting
40.  CVE-2013-3093: Cross-Site Request Forgery
41.  CVE-2013-3094: Persistent Code Execution
42.  CVE-2013-3098: Cross-Site Request Forgery
43.  CVE-2013-3099: Unvalidated URL Redirect
44.  CVE-2013-3100: Multiple Buffer Overflows
45.  CVE-2013-3101: Cross-Site Scripting
46.  CVE-2013-4855: Symlink Traversal
47.  CVE-2013-4856: Information Disclosure
48.  CVE-2013-4857: File Inclusion
49.  CVE-2013-4848: Cross-Site Request Forgery
50.  CVE-2013-4913: Improper File-system permissions
51.  CVE-2013-4914: Improper File-system permissions
52.  CVE-2013-4915: Improper File-system permissions
53.  CVE-2013-4916: Improper File-system permissions
54.  CVE-2013-4917: Improper File-system permissions
55.  CVE-2013-4918: Insecure Cryptographic Storage
56.  CVE-2013-4919: Insecure Cryptographic Storage

Subject Background

•  What are SOHO network devices?
– Networking equipment used in small networks
– Supplemental equipment (e.g., enterprise

networks)

•  Who uses SOHO networking devices?
– Small Businesses
– Home Users
– Large Enterprises

Players in the SOHO Market

•  Vendors
– Linksys, Belkin, Netgear, ASUS, Actiontec,

D-Link, TP-Link, TRENDnet

•  Consumers
– Ma and Pa (Home Users)
– KWIK-E Mart (Small Businesses)
– Large Enterprises

Evaluated SOHO Products

•  ASUS: RT-AC66U and RT-N56U
•  TRENDnet: TEW-812DRU

•  TP-LINK: TL-WDR4300 and TL-1043ND

•  Linksys: EA6500 and WRT310Nv2

•  Netgear: WNR3500 and WNDR4700

•  Belkin: N900, N300, and F5D8236-4v2

•  D-Link: DIR-865L

•  Verizon Actiontec: MI424WR-GEN3I

Why did we choose these routers?

•  Popular brands
•  Popular models
• New router technology

Is this a Router or a Millennium Falcon?

•  21st Century SOHO Router Technology
– Ability to stream digital content
– Ability to backup networked computers
– Network Attached Storage (NAS)
– Network Printing
– Cloud Ready file access

Security Risks

•  Larger attack surface
•  Insecure by default
•  Assumption of security on the (wireless) LAN
•  Poor security design and implementation

Testing Methodology

•  Information Gathering
•  Scanning and Enumeration
• Gaining Access
• Maintaining Access

Information Gathering

•  Administration Settings
– Default credentials
– Management interface

•  WLAN Settings
– SSID and wireless encryption

•  Network Service Settings
– DHCP, DNS, SNMP, UPnP, SMB, FTP, etc.

Scanning and Enumeration Cont.

Port Scan

Banner Grab

TCP: nmap –sS –Pn –sV –p T:1-65535
X.X.X.X
UDP: nmap –sU –Pn –p U:1-65535 X.X.X.X

Netcat: nc –nv <X.X.X.X> <port>

Gaining Access

•  Service Investigation
– Analyze web applications
– Analyze servers (e.g., FTP, SMTP, SMB, HTTP)
– Source Code Review (Static Code Analysis)
– Fuzz Network Services (Dynamic Analysis)

Analyzing Web Applications

•  Understand the application
– Programming languages used

•  Server side (e.g., PHP, .NET, Python, ASP, Ruby on Rails)
•  Client side (e.g., JavaScript, HTML, JSON, Flash)

– Protocols and APIs used (e.g., SOAP, REST)
–  Internet Media Type/MIME (e.g., JavaScript, HTML)

•  Toolz

– Web proxy (i.e., Burpsuite)
– Firebug (JavaScript debugger, HTML inspection)
– Web Crawler

Analyzing Web Applications Cont.

Burpsuite

Firebug

Analyzing Servers

•  Authentication
–  Type (e.g., Password, Certificate)
–  Anonymous access/Weak or no credentials
–  Misconfigurations (e.g., Directory listing, permissions)

•  Encryption

–  SSL/TLS?
–  SSH (AES, 3DES)?

Static Code Analysis

•  If source code is available, GET IT!

•  Things to look for:
– Logic flaws (e.g., authentication, authorization)
– Functions not performing bounds-checking
– Backdoors

Static Code Cont.

Vulnerable code

*Code from the TRENDnet TEW-812DRU – network.c

Fuzzing (Dynamic Analysis)

•  What happens if peculiar input is introduced?
– A{-G42!BBB}}}}}}/\/\/}}}}}}+=-_-1234d`~~((.)_(.))$
– AAAAAAAAAAAAAAAAAAAAAAAAAA

•  Fuzzers
–  SPIKE: generic_send_tcp X.X.X.X 21 ftp.spk 0 0
–  BED: ./bed.pl -s HTTP -t X.X.X.X -p 80
–  Metasploit Framework
–  Python!

SPIKE

Spike
Template

(*.spk)

SPIKE Cont.

Fuzzing

Analyze Fuzzing Results
•  Toolz

– Debugger (i.e., GDB)
– System Call Tracer (i.e., strace)

*Debugging ASUS
RT-AC66U exploit

Gaining Access Cont.

•  Reverse Engineering
– Router Binaries

•  Simple RE Toolz and Techniques

– Strings
– Hexdump
– Grep
– Open source? Perform static analysis!

•  Exploit Development

Reverse Engineering Toolz and
Techniques

•  Strings: strings –n <INT> <FILE>

*TP-Link TL-1043ND Firmware

Reverse Engineering Toolz and
Techniques

•  Grep: grep –R <string> *

*Code from the TRENDnet TEW-812DRU

Exploit Development

•  Cross-Site Request Forgery
•  Command Injection
•  Directory Traversal
•  Buffer Overflow

Cross-Site Request Forgery

#define: CSRF is an attack
that forces an unsuspecting victim
into executing web commands
that perform unwanted actions on
a web application.

Gimppy
(Attacker)

Jad
(Victim)

Testing for Cross-Site Request Forgery

•  Anti-CSRF Tokens?
•  HTTP referrer checking?

Cross-Site Request Forgery
Countermeasures

•  Users
– Logout of web applications
– Do NOT save credentials in your browser

•  Developers

–  Implement Anti-CSRF tokens AND HTTP
referrer checking

Command Injection

#define:
Command Injection
is a form of attack
where operating
system specific
commands are
injected into a
vulnerable application
for execution.

Testing for Command Injection

•  Survey the application
–  Look for application features that could call underlying

system functionality(e.g., ping, traceroute)
– Source code? Static analysis!

•  Test Examples
–  ifconfig ; cat /etc/passwd ß Linux
–  dir | ipconfig ß Windows/Linux
–  ls /var/www/`<cmd>` or $(<cmd>) ß Linux* *Command substitution

Command Injection – Vulnerable Code
<?php
 $dig=shell_exec("dig {$_GET['Domain']}");
 echo($dig);
?>

Command Injection Countermeasures

•  Developers
– Avoid calling shell commands when possible
–  If an API does not exist, sanitize user input

before passing it to a function that executes
system commands.

•  Python Example
– BAD: os.system(‘ls ‘ + dir)
– GOOD: os.listdir(dir)

DEMO

•  CSRF and Command Injection

CSRF and Command Injection Demo

Directory Traversal
#define: Directory Traversal is a form of attack where an
attacker can access files and directories outside of the
intended directory.

Testing for Directory Traversal
•  Enumerate the application

–  Are there commands or request parameters that could be used
for file-related operations?

•  URL Encoding (Web only)
–  %2f à /
–  %2e%2e%2f à ../

•  Test Examples
–  http://infosec2.blogspot.com/DT.php?file=../../../../etc/passwd%00
–  http://JadWebApp.com/DT.php?dir=..%2f..%2fetc%2fpasswd
–  symlink / rootfs ß SMB

Directory Traversal– Vulnerable Code
<?php
if ($_GET['file'])
 $file = $_GET['file'];
include('/var/www/'.$file);
?>

Directory Traversal Countermeasures

•  Developers
– Try not to use user input in file system calls
– Perform path canonicalization (symlinks, . & .. are

resolved)
– Properly configure services

DEMO

•  Directory Traversal

Buffer Overflow

#define: Buffer Overflows occur when a program attempts
to write data that exceeds the capacity of a fixed length
buffer, and consequently, overwrites adjacent memory.

Stack Based Buffer Overflow (x86)

Testing for Buffer Overflows

•  Testing for overflows
– Dynamic Analysis
– Static Analysis

Buffer Overflow – Vulnerable Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char * argv[]){

char argument[42];

if (argc < 2){
 printf("\n[!!!] Please supply a program argument. [!!!]\n\n");
 exit(0);
}

printf("\n[*] Gimppy's BOF code example\n");
strcpy(argument, argv[1]);
printf("[*] You supplied '%s' as your argument!\n", argument);
printf("[*] Program Completed. \n");

}

Buffer Overflow Countermeasures

•  Developers
– Don’t use unsafe functions
– Perform bounds checking
– Compile with overflow prevention techniques

•  Canary/Stack Cookie
•  safeSEH (Windows)
•  ASLR
•  DEP

DEMO

•  Buffer Overflow

YIKES! What can we do?

•  Consumers
– Harden the SOHO device
– Demand that vendors put more emphasis into

securing SOHO networking equipment.

•  Vendors
– Design software using Defense in Depth
– Abide by the principal of least privilege
– Follow coding best practices
– Patch management

