
Copyright 2017 Independent Security Evaluators, LLC

T h e N o t S o S a m e - O r i g i n P o l i c y

David Petty, Associate Security Analyst | dpetty@securityevaluators.com

About Me

• B.S. Computer Science: Northwestern University
• Associate Security Analyst at ISE
• Interests:

• Hacking
• Video games
• Musical instruments
• Pets

Bailey and Gandalf

About ISE
https://www.securityevaluators.com

@ISEsecurity

• Hackers, cryptographers, RE
• White-box perspective
• Customers

• Companies with high value assets

• Research
• Routers, NAS, Healthcare

IoT Village

Overview
• Same-Origin Policy (SOP)
• Cross-Site Request Forgery (CSRF)
• Bypassing the SOP

– Cross-Origin Resource Sharing (CORS)
– Flash, Java applets, Silverlight policies

• Hardening the SOP

Who should care?

• Web app developers
– Helps you reduce you application’s exposure

• White hat hackers
– Increases your insight when evaluating SOP policies

• Web application users
– Gives insight on the dangers of untrusted links

Same-Origin Policy

• 1995
• Security mechanism for browsers: restricts webpages from

freely accessing data on other webpages
• What’s an origin?

• Protocol
• Host
• Port

http://www.example.com:80

Same-Origin Policy

http://www.example.com/page.html
URL Outcome Reason

http://www.example.com/anotherpage.html Success Origins match

http://user:pass@www.example.com/anotherpage.html Success Origins match

https://www.example.com/page.html Failure Different protocol

http://www.example.com:81/page.html Failure Different port

http://www.example2.com/page.html Failure Different host

http://example.com/page.html Failure Different host

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

Enforcing the SOP

Simple GET and POST:
• Send a request: ALLOWED
• Adopted in Internet’s early history

HTML tags
• <form>, <script>, , <object>,<frame>, <iframe>, <link>

AJAX
• XMLHttpRequest: send/receive data asynchronously

Enforcing the SOP

Simple GET and POST:
• Receive a response:RESTRICTED
• Adopted with AJAX after dangers were known
• Malicious webpages could freely access other servers’ data

Enforcing the SOP

Non-simple: special method or header
• Send a request: RESTRICTED
• Requests are preflighted

Examples:
• PUT and DELETE
• Content-Type: application/xml
• X-Requested-With: XMLHttpRequest

Enforcing the SOP

• Context-dependent
• AJAX responses: RESTRICTED
• External hyperlinks: ALLOWED

Cross-Site Request Forgery
• Requirements:

– Victim is logged into a vulnerable site, receives a session cookie
– Victim visits a malicious webpage (e.g., through phishing)

• Attack:
– Malicious webpage creates a cross-site request to modify the web

app’s server state
– Server accepts the request because the browser sends cookies
– State-changing request doesn’t require a response

Cross-Site Request Forgery

• Common target sites
• Banks
• Social media
• Project management
• Any high-asset account

• Common forged requests
• Make payments
• Change credentials
• Escalate privileges
• Sabotage
• XSS payload

CSRF Protection

• CSRF token
– Request parameter

• Header
• Request body parameter

– Randomly generated, cryptographically secure
– Generated per user session
– Independent of other info (e.g., cookies or server time)

CSRF Protection

Bypassing the SOP

Custom policies Potential Attack Pages

Cross-Origin Resource Sharing (CORS) Standard HTML webpage

crossdomain.xml Flash, Java applets, Silverlight

clientaccesspolicy.xml Silverlight

Demo Web Apps

http://demo.securityevaluators.com/dpetty/ (instructions)
• demo.securityevaluators.com: web apps
• demo2.securityevaluators.com: attack pages

Bypassing CORS

Cross-Origin Resource Sharing (CORS)
– Developed by W3C to standardize the SOP
– Set of HTTP response headers to define allowed domains

Bypassing CORS

• Wildcard policy
– Whitelists any third party domain

Bypassing CORS
• Limitation: cannot send session cookies with wildcard-allow

• What if the server whitelists whatever “Origin” is sent?

CSRF_cors.html

CSRF_cors.html

CSRF_cors.html

• Simple GET request to mainpage.php

• Read response and store in a variable

CSRF_cors.html
• mainpage.php response

CSRF_cors.html

CSRF_cors.html
• Extract CSRF token from response

• Send POST request (with token) to buy.php

Bypassing crossdomain.xml

• crossdomain.xml – used by Flash, Java applets, Silverlight
– Stored in root directory of web app

– Wildcard policy: no restrictions

CSRF_flash.swf

CSRF_flash.swf

• Sends GET request to editCard.php

Bypassing Java Applets and Flash

VS.

BLOCKED

ALLOWED

Bypassing Java Applets and Flash

• Attacker can steal victim’s credit card #

ALLOWED

Bypassing clientaccesspolicy.xml

• clientaccesspolicy.xml – exclusively Silverlight

Other Bypasses: JSONP

• “JSON with padding”
– <script> src is not subject to SOP in this case

– Evaluates response as JavaScript

<script src="http://www.anothersite.com/data?callback=someFunc"></script>

someFunc({“creditcard": “4111111111111111", "name": “John Smith”});

Other Bypasses: IE

• Internet Properties: security zones
• Custom level option disables CORS protections
• Domains must be in the same zone

• Port is excluded from origin
• http://example.com:80
• http://example.com:8080

Limitations
• CORS

– Wildcard-allow policy means browser cannot send cookies

• Java applets and Silverlight
– Require victim to run plugin
– Limited plugin support for browsers

• Firefox ESR 32-bit as of v.52 (March 2017)
• No Chrome support as of v.45 (September 2015)
• No limitations for IE ActiveX plugin

• Flash
– Must be enabled in victim’s browser

Hardening the SOP
Response headers

– Content-Security-Policy
• Whitelist of domains

– X-Frame-Options
• Limited control
• Prevents external embedding of webpages in <frame> and <iframe> tags

Same-site cookie attribute
– Set-Cookie: SameSite=strict

Takeaways

1) The SOP has more nuances than you would expect

2) A weakened SOP is dangerous

3) The goal is to optimally balance usability and security

Contact
David Petty

443.841.9713
dpetty@securityevaluators.com

Independent Security Evaluators

https://www.securityevaluators.com
@ISEsecurity

Slides: https://www.securityevaluators.com/knowledge/presentations/

