L JJ)SH

Analysis of Mutation and Generation-Based Fuzzing
Whitepaper

Charlie Miller and Zachary N. J. Peterson
Independent Security Evaluators
www.securityevaluators.com

March 1, 2007

(© Independent Security Evaluators 2007. All rights reserved

Analysis of Mutation and Generation-Based Fuzzing 1



L JJ)SH

Abstract

We present a study of two methods of dynamic application
analysis: mutation-based fuzzing and generation-based
fuzzing. We quantify the differences of these methods by
measuring the amount of executed code required to parse
PNG image files. Results indicate that generation-based
fuzzing can execute 76% more code when compared to
mutation-based methods.

1 Introduction

“Intelligent fuzzing usually gives more results.”
— Ilja van Sprundel[8]

Dynamic analysis, or fuzzing, is a popular method of
finding security vulnerabilities in software [10]. Fuzzing
may be used by a developer to find potential problems as
part of the quality-assurance process. Likewise, a fuzzer
may be used to find potential exploits in an existing soft-
ware application. The technique of fuzzing consists of
sending a large volume of different inputs into a program
in an attempt to make the program perform in a manner
that was not intended. Fuzzing may result in memory
corruption, a program crash, extreme resource usage, efc.
Such incidents may be exploited to cause a denial of ser-
vice or even allow an attacker to execute arbitrary code in
the context of the application. Fuzzing has grown in popu-
larity because it is much easier (and often more effective)
to generate and run arbitrary inputs than it is to perform a
manual code audit or use software reverse engineering.

One of the most important aspects of successfully find-
ing vulnerabilities by fuzzing is the quality and quantity
of the fuzzed inputs. These inputs, or test cases, are nor-
mally constructed in one of two fashions. In the first
method, called mutation-based fuzzing, known good data
is collected (files, network traffic, efc) and then modified;
modifications may be random or heuristic. Examples of
heuristic mutations include replacing small strings with
longer strings or changing length values to either very
large or very small values. The other method, known as
generation-based fuzzing, starts from a specification or
RFC, which describes the file format or network protocol,
and constructs test cases from these documents. The key
to making effective test cases is to make each case differ

from valid data so as to (hopefully) cause a problem in
the application, but not to make the data too invalid, or
else the target application may quickly discard the input
as invalid.

The advantage to mutation-based fuzzing is that lit-
tle or no knowledge of the protocol or application under
study is required. All that is needed is one or more good
samples and a method of fuzzing a target application. On
the other hand, generation-based fuzzing requires a signif-
icant amount of up-front work to study the specification
and manually generate test cases. Sometimes manually
generated test cases become too similar to the specifica-
tion and do not differ in the unpredictable ways that ben-
efit generation-based fuzzing. Regardless, intuition says
that the extra knowledge gained by understanding the for-
mat should result in higher quality test cases. Van Sprun-
dels quote at the beginning of this section summarizes this
belief. However, there has not yet been an attempt to
quantify how much better generation-based fuzzing per-
forms than mutation-based fuzzing.

This paper takes one specific file format, the Portable
Network Graphics (PNG) format, and attempts to pre-
cisely quantify the potential advantages gained by using
a generation-based approach. It does not attempt to quan-
tify the added difficulties in constructing test cases in a
generated form or to establish the number of test cases
required to completely fuzz an application. Our results
show that generation-based fuzzing performs up to 76%
better when compared to mutation-based fuzzing techniques.

2 Portable Network Graphics Files

The Portable Network Graphics (PNG) format is an exten-
sible file format for the loss-less storage of compressed
raster images. This format is widely used and is sup-
ported by most Internet web browsers including Internet
Explorer, Firefox, and Safari.

A PNG file begins with an eight byte signature con-
taining the following values: 137 80 78 71 13 10
26 10. This signature is followed by a sequence of chunks.
Each chunk consists of a four byte length field, a four byte
chunk type field, an optional chunk data field, and a four
byte cyclic redundancy code (CRC) checksum field. The
length field is an unsigned integer that gives the length of

Analysis of Mutation and Generation-Based Fuzzing



Figure 1: The image containing the most chunks (nine).

the data chunk field in bytes. The chunk type field is de-
signed so that the four bytes are in the ASCII range and
the case of the letters has significance for the decoder.

The PNG specification [9] defines eighteen chunk types
of which three are mandatory in every PNG file: THDR,
IDAT and IEND. Optional chunks are referred to as an-
cillary. Ancillary chunks may be ignored by a decoder.
An extension to the original PNG specification exists [4],
from which we consider three additional chunks. In this
paper, we consider a total of twenty-one different types of
chunks: THDR, PLTE, tRNS, cHRM, gAMA,
iCCp, IDAT, SBIT, sRGB, tEXt, zTXt,
iTXt, bKGD, hIST, pHYs, sPLT, tIME,
oFFs, pCAL, sCAL, IEND

Some chunk types may occur more than once in a
file. Additionally, some chunks are mutually exclusive.
For example, if the iCCP chunk is present, the sRGB
chunk should not be present. Furthermore, the ordering of
some chunks is mandated. For example, the THDR chunk
should be first and the TEND chunk should be last. Some
chunks, such as the t IME chunk, may occur anywhere
in the file, while other chunks, such as the bKGD chunk,
must occur after the PLTE chunk but before the IDAT
chunk. Lastly, the specification also allows other chunks
in addition the twenty-one we consider, to be present in a
file. We do not consider these for this paper.

Number of Files

Ao
3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21

Number of Chunk Types

Figure 2: The distribution of the number of chunks
present in a file.

3 PNG File Format Statistics

A collection of 1,631 unique PNG files were collected
from the Internet. To obtain these files, the Alexa Web
Search Platform (AWSP) [1] was used to obtain a list of
all URLs ending in “.png”. After processing 16,623 po-
tential PNG URLSs using tools available through AWSP,
1,631 valid PNG files were obtained. The URLs that did
not produce a valid PNG file were either no longer avail-
able, were not PNG files, were duplicates of other files
obtained, or required authentication to acquire. The valid
files were dissected according to the specification and statis-
tics were obtained on the number and types of chunks
present in each file (see Table 1).

For each file, we counted the number of chunks that
comprised the PNG image. Results are shown in Fig-
ure 2. Very few files have more than seven chunks and
none have no more than nine chunks. Figure 3 illustrates
the frequency of chunk type in the PNG files. As ex-
pected, all files contained the mandatory THDR, IDAT and
IEND chunks. However, nine of the twenty-one consid-
ered chunk types occurred in fewer than 5% of the files
and some chunk types failed to appear at all.

These results demonstrate that choosing random files
from the Internet to perform mutation-based fuzzing, with-
out knowledge of the protocol, will generally only fuzz a
few different chunk types. On average, only five of the
possible twenty-one chunks will be tested by randomly
selecting a file — a significant limitation. Vulnerabilities

Analysis of Mutation and Generation-Based Fuzzing



Sg

[ Number of Files | Mean | Standard Deviation | Maximum | Minimum |

y 1631 | 49 |

1.3

[ 9 [ 3 |

Table 1: Distribution of the number of chunks in a file.

Numbers of Files that Contain Chunk Type (%)

IHDR PLTE tRNS cHRM gAMA iCCP IDAT sBIT sRGB tEXt ZzTXt

1%

iTXt bKGD hIST pHYs sPLT tIME oFFs pCAL sCAL IEND

Chunk Type

Figure 3: The frequency of type chunk type in files.

cannot be discovered in code that is not executed, ex-
emplifying the advantages of generation-based fuzzing.
However, it is not possible to make the conclusion that
generation-based fuzzing is more effective without know-
ing more about the binaries that decode the PNG. For ex-
ample, perhaps all commodity decoders ignore all but the
most common types of chunks, in which case it is only im-
portant to fuzz those chunks that are present in common
PNGs. We address this concern by correlating code cov-
erage of the PNG decoder with the different chunk types.

4 Analysis of Code Coverage for
PNG Chunks

In order to draw a conclusion about the differences be-
tween mutation and generation-based fuzzing, it is neces-
sary to see the types of chunks that mutation-based fuzzing
is likely to miss, but also to observe the amount of code
these chunks represent in the PNG decoder. In other words,
missing a chunk that has very little unique processing in-
volved may not be as detrimental as missing a chunk that

requires a significant amount of parsing and processing.
Code coverage is a metric used to describe the num-
ber lines of source code (or assembly) that have been ex-
ecuted. We use code coverage to measure the amount of
code used to process each chunk. While there is not nec-
essarily a correlation between code coverage and finding
security vulnerabilities, it is certainly the case that code
that is not executed will not reveal any vulnerabilities.
The PNG decoder we choose to examine is a small
front-end to libpng 1.2.16 [5]. This library is used by most
open source web browsers for PNG decoding, including
Firefox, Opera, and Safari. In order to obtain code cover-
age information, the library was instrumented with gcov
[7] to record the source lines executed. As a first step, the
coverage for opening an empty file was measured in order
to reveal the general processing and start-up code. Next,
a minimal PNG file was obtained that contained only the
mandatory chunks, namely ITHDR, IDAT, and IEND. The
difference between the coverage of the minimal file and
the coverage opening an empty file is considered to be
the minimal amount of code needed to parse a PNG using
libpng. We can conclude that this difference excludes gen-

Analysis of Mutation and Generation-Based Fuzzing



ﬁ
4

S

g8

> 100 T T T T T

X

=4

2

é B [
T

B B0 e ]
B 0, 50%

3 48% e

A N [ T O
§ 40

O 2%  25% 25%

o

SRR B OB OB OB B B OB R B BN B BT AR

£

5

(2

% PLTE tRNS cHRM gAMA iCCP sBIT SRGB tEXt ZTXt iTXt bKGD hIST pHYs sPLT tIME oFFs pCAL sCAL

=3

z

Chunk Type

Figure 4: The number of lines of code required to process each chunk as a percentage of the amount of code required

to process a minimal PNG file.

eral startup and file I/O and only measures the coverage
of the required instructions to decode the three mandatory
chunks.

In order to measure the effects of each chunk type on
code coverage, we use generation-based fuzzing to incre-
mentally add new chunk types to the minimal PNG file
and re-measure code coverage. We used an open-source
generation-based fuzzing tool called SPIKEfile [3] to dy-
namically create approximately 1,000 files for each added
chunk type. Chunks were added one at a time, with the
only exception being the hIST chunk which requires the
PLTE chunk. We configured SPIKEfile to create PNG file
variations that share the same chunk types and structure,
but differ in chunk type properties and sizes. This varia-
tion provides an insight into how chunk types affect code
coverage.

Figure 4 illustrates the approximate increase of code
required to parse each chunk type as a percentage of the
amount of code required to parse the minimal PNG file.
Note that due to the nature of the fuzzing, and the fact that
there are often dependencies between different chunks (es-
pecially the THDR chunk), these numbers represent a lower
bound on the amount of code required for processing each
chunk.

Results show that some chunk types require more code
than others, but all require a significant amount of code.
In particular, chunk types that were not represented at all
in the files collected (1 TXt, sPLT, sCAL, and hIST) to-
gether represent 76% more code than is required to pro-
cess the three mandatory chunks in the minimal PNG file.
This code could not have be covered using mutation-based
fuzzing. To achieve a maximum code coverage, one must
use files that include all the different chunks types. This
comes at the cost of a significant initial effort to com-
pletely understand the file format.

5 Mutation Versus Generation-based
Fuzzing

We formally compare the code coverage of mutation-based
and generation-based fuzzing techniques. Two different
variations of a mutation-based fuzzer were used. The first
takes a known good file and randomly manipulates bytes
in various chunk types but does update the correspond-
ing CRC. This represents the most basic type of mutation-
based fuzzer as it does not insert new bytes into the file,
for example, long strings. The second similarly manip-
ulates random bytes, but generates a correct correspond-

Analysis of Mutation and Generation-Based Fuzzing



ﬁ
4

Increase in Number of Lines of Code Covered (%)

BOD o

200+

"""""""" 137% 7
.85% 7777777 I 777777 I 777777

LBO v e 139%

Mut-CRC-5 Mut-CRC-7 Mut-CRC-9

Gen

Figure 5: The number of lines of source code covered as a percentage of the amount of code required to decode a

minimal PNG file.

ing CRC. This assumes some basic knowledge about the
file type. Our mutation-based fuzzer functions very simi-
larly to the mutation-based fuzzers, FILEfuzz [6] and Not-
SPIKEfile [2].

We ran our mutation-based fuzzer starting from three
known good files. The first file contains five different
chunk types that would be the most likely number to find
by chance, the second contains seven chunk types that
would be unlikely to find by chance, and the last con-
tains nine chunk types that would be extremely unlikely
to find by chance. For each of these three starting files,
200,000 test cases were generated: 100,000 randomly mu-

tated files, and 100,000 mutated files with matching CRCs.

For generation-based fuzzing, all of the files created
for the previous section using SPIKEfile were tested. Ad-
ditionally, files were created that fuzzed some of the non-
data fields, such as block length, CRC, chunk name, efc.
This resulted in a set of 29,511 test cases that covered all
twenty-one chunk types. The set of test cases was sig-
nificantly smaller than those used by the mutation-based
fuzzer and no randomness was used in the generation of
the generation-based test cases — they are strictly heuristic.
This is a distinct advantage of generation-based fuzzing
techniques.

The comparison of code coverage results are shown in
Figure 5. “Mut” refers to the mutation-based fuzzing tech-
niques, for the five, seven and nine chunk type test cases,
with and without CRCs. “Gen” refers to the generation-

based test cases. These results confirm the cursory anal-
ysis of the previous sections. The initial file with five
chunk types contained the mandatory three chunk types,
plus bKGD and pHYs. Figure 4 estimates that these two
chunks add an additional 55% of code coverage over the
minimal PNG file. Figure 5 indicates that fuzzing begin-
ning from this initial file covers 60% more code than the
minimal file. In this case, Figure 4 serves as a method of
estimating code coverage for the actual fuzzing runs.
Despite the clear difference in fuzzing methods, our
experimental procedure has limitations. Fuzzing is not an
exact science and the results presented are only an indi-
cation of a trend. Code coverage could change signifi-
cantly by varying only a few factors, such as longer run
times, more detailed test cases, etc. However, due to the
fact that applications often contain large sections of code
that will only execute with uncommon inputs, mutation-
based fuzzers will always fair poorly when compared to
generation-based fuzzers. We confirmed this hypothesis
with our PNG experiments. For the PNG file format, on
average, a mutation-based fuzzer will only cover approx-
imately 24% of the code of a generation-based fuzzer.

6 Conclusions

This paper measures the quantitative differences between
mutation and generation-based fuzzing for the PNG im-

Analysis of Mutation and Generation-Based Fuzzing



L JJ)SH

age file format and libpng. For this file format, a mutation-
based fuzzer is at a large disadvantage due to the lack of
diverse files available for testing. Results indicate that
large sections of code that will not be exercised. A generation-
based approach faired much better. There still exists much
future work, including extending this technique to other
file formats and decoders and refining the metrics of code
coverage.

References

[1] ALEXA. Alexa web search platform: Beta.
https://websearch.alexa.com, 2007.

[2] GREEN, A., AND IDEFENSE LABS. notSPIKEfile.
http://labs.idefense.com/software/,
2005.

[3] GREEN, A., AND IDEFENSE LABS. SPIKEfile.
http://labs.idefense.com/software/,
2005.

[4] RANDERS-PEHRSON, G. Extensions to
the PNG 1.1 specification, version 1.1.0.
http://www.libpng.org/pub/png/spec,
1998.

[5] RoELOFS, G. libpng home  page.
http://www.libpng.org/pub/png, 2007.

[6] SUTTON, M., AND IDEFENSE LABS. FileFuzz.

http://labs.idefense.com/software/,
2006.

[7] THE GNU PROJECT. gcov — a test coverage pro-
gram. http://gcc.gnu.org/.

[8] VAN SPRUNDEL, I. Fuzzing: Breaking software in
an automated fashion. Talk at: 22nd Chaos Commu-
nication Congress: Private Investigations, 2005.

[9] W3C. Portable Network Graphics (PNG) Spec-
ification (Second Edition) Information technol-
ogy — Computer graphics and image process-
ing — Portable Network Graphics (PNG): Func-
tional specification. ISO/IEC 15948:2003 (E).
http://www.w3.org/TR/PNG, 2003.

[10] WIKIPEDIA. Fuzz testing.

Analysis of Mutation and Generation-Based Fuzzing 7



