
Injecting SMS Messages into Smart Phones for Security Analysis

Collin Mulliner

Deutsche Telekom Laboratories / TU-Berlin

collin@sec.t-labs.tu-berlin.de

Charlie Miller

Independent Security Evaluators

cmiller@securityevaluators.com

Abstract
The Short Message Service (SMS) is one of the

building blocks of the mobile phone service. It is

used for text messaging by users as well as for ser-

vices that work under the hood of every mobile phone.

The security of SMS-implementations is critical be-

cause attacks can be carried out remotely without any

user interaction and because SMS can not be dis-

abled or filtered on current mobile phones. This pa-

per presents a novel method for vulnerability analy-

sis of SMS-implementations. The presented approach

is independent from any service operator, does not pro-

duce costs, and guarantees reproducible results. Our

approach was able to identify previously unknown se-

curity flaws that can be used for Denial-of-Service at-

tacks against current smart phones.

Keywords: SMS, Smart Phones, Vulnerability Analysis,

Fuzzing.

1. Introduction

The Short Message Service (SMS) is the most popular

secondary service on mobile phones beloved by both the

users and the service providers for it’s ease of use and

for the generated revenue, respectively. Besides the use

for simple text messaging, the Short Message Service has

many applications on a mobile phone. It is used as a con-

trol channel for services like voice mail where it is used

to notify the user about new messages. Another SMS-

based service is remote over-the-air (OTA) phone config-

uration. SMS further is used as a transport for the Wire-

less Application Protocol (WAP).

The Short Message Service in all its functionality is

complex and therefore security issues based on imple-

mentations faults are common. In the past years SMS-

based security issues for almost every mobile phone plat-

form were known. Furthermore, no possibility exists to

firewall or filter SMS messages, therefore, SMS-based

attacks are hard to prevent especially since user interac-

tion is not required. Therefore, it is necessary to develop

techniques and tools to analyze and improve the security

of SMS-implementations and SMS-based applications.

In this paper we present a novel approach to the vul-

nerability analysis of SMS-implementations on smart

phones. To the best of our knowledge, no attempt has

been made before to analyze and test Short Message Ser-

vice implementations and SMS-based applications in a

methodical way. We believe that the main reason for this

situation is that SMS testing would be very cost inten-

sive since SMS messages would have to be sent to the

tested phones in large quantities.

The analysis of SMS-implementations on smart

phones is difficult for several reasons besides the cost

factor. The reasons all tail from the fact that SMS mes-

sages are delivered through infrastructure controlled by

an operator and thus is outside the control of the re-

searchers who are conducting the vulnerability analysis.

One problem is the uncertainty of whether a mes-

sage is delivered to the target in its original form. This is

because mobile phone operators have the ability to fil-

ter and modify short messages during delivery. Also,

it is possible that the operator might not filter mes-

sages on purpose but might use equipment that can

not handle certain messages. Second, SMS is an un-

reliable service, meaning messages can be delayed

or discarded for no deterministic reason. This makes

the testing very time-consuming and hard to repro-

duce.

We addressed these problems by removing the need

for a mobile phone network all together through inject-

ing short messages locally into the smart phone. Injec-

tion is done in software only and requires only applica-

tion level access to the smart phone. The injection is tak-

ing place below the mobile telephony software stack and

therefore we are able to analyze and test all SMS-based

services that are implemented in the mobile telephony

software stack.



The vulnerability analysis itself was conducted us-

ing fuzzing. In this work, we present the possibilities

for fuzzing-based testing of SMS-implementations. Fur-

ther, we present our testing methodology and the tools

we have developed in the process. To show that our ap-

proach is generic we implemented and tested our analy-

sis framework for three different smart phone platforms.

So far we have found several flaws in the tested

SMS-implementations, some of which can be exploited

for Denial-of-Service attacks. One particular vulnera-

bility allows us to disconnect a device from the mobile

phone network through crashing the telephony appli-

cation, leaving the phone in state where it cannot re-

ceive calls.

Contributions of this paper are the following:

• We introduce a novel method to test SMS-

implementations that circumvents filters and any

other restrictions that might be put in place by a mo-

bile phone service operator. It further prevents the

provider from easily detecting that testing is tak-

ing place. Furthermore, it allows analysis of ser-

vices and applications built on top of SMS such as

WAP.

• We developed a testing framework that al-

lows one to perform SMS vulnerability analysis at

high speeds and without costs.

• We developed a tool that performs security testing

of SMS-implementations through fuzzing. The tool

found a number of previously unknown vulnerabil-

ities.

The rest of this paper is structured as follows: Section

2 presents related work. Section 3 describes the Short

Message Service and how messages are transferred be-

tween devices. Section 4 describes in great detail how

SMS messages are received and handled on a smart

phone. Section 5 describes our SMS injection frame-

work. In Section 6 we present our fuzzing tools, the

methodology, the results of our fuzzing approach, and

the possible attacks based on the results. In Section 7 we

briefly conclude.

2. Related Work

Previous research in the area of SMS security can be di-

vided into two areas. The first area consists of research

that investigated protocols that facilitate SMS as a trans-

port such as WAP and MMS. Here the creators of the

PROTOS [8] testing suite implemented test cases for

WAP implementations. In [6] the authors build a frame-

work for analyzing the security of MMS client imple-

mentations.

The second area of research conducted in [10] focused

around the possibility of mobile phone service disruption

based on the ability to send excessive amounts of short

messages from the Internet to individuals and groups of

people in a certain area.

In the past, SMS bugs [3, 7, 5] were found by acci-

dent rather than through thorough testing. One notable

example of this kind of bug discovered is the Curse of

Silence [9] bug which existed in most of Nokia’s Sym-

bian S60-based smart phones. The bug consisted of a

single malformed SMS message that, upon reception,

prevented further SMS messages from being displayed

to the user. The work presented in this paper provides

a method for conducting thorough security analysis of

SMS-implementations without the burden of services

fees.

3. The Short Message Service

The Short Message Service is a store and forward sys-

tem, messages sent to and from a mobile phone are first

sent to an intermediate component in the mobile phone

operators network. This component is called the Short

Message Service Center (SMSC). After receiving a mes-

sage, the SMSC forwards the message to another SMSC

or if the receiving phone is handled by the same SMSC,

it delivers the message to the recipient without invoking

another party.

3.1. The SMSMessage Format

SMS messages exist in two formats [2]. The

SMS SUBMIT format is used for messages sent from a

mobile phone to the SMSC. The SMS DELIVER for-

mat is used for messages sent from the SMSC to the

mobile phone. Since our testing method is based on lo-

cal message injection that replicates an incoming mes-

sage, we are only interested in the SMS DELIVER

format.

An SMS DELIVER message consists of the fields

shown in Figure 1. The format is simplified since our

main fuzzing targets are the Protocol ID, the Data Cod-

ing Scheme, and the User Data fields. Other fields such

as the User Data Length and the DELIVER flags will

be set to corresponding values in order to create valid

SMS DELIVER messages.

3.1.1. The User Data Header The User Data Header

(UDH) provides the means to add control information to

an SMS message in addition to the actual message pay-

load or text. The existence of a User Data Header is indi-

cated through the User Data Header Indication (UDHI)

flag in the DELIVER field of an SMS DELIVER mes-

sage. If the flag is set, the header is present in the User

2



Name Bytes Purpose

SMSC variable SMSC address

DELIVER 1 Message flags

Sender variable Sender address

PID 1 Protocol ID

DCS 1 Data Coding Scheme

SCTS 7 Time Stamp

UDL 1 User Data Length

UD variable User Data

Figure 1. SMS DELIVER Message Format

Field Bytes

Information Element (IEI) 1

Information Element Data Length (IEDL) 1

Information Element Data (IED) variable

Figure 2. The User Data Header (UDH).

Data of the message. The User Data Header consists of

the User Data Header Length (UDHL), followed by one

or multiple headers. The format for a single User Data

Header is shown in Figure 2.

4. Mobile Phone Side SMS Delivery

Most current smart phones are composed of two proces-

sors. The main CPU, called the application processor,

is the processor that executes the smart phone operating

system and the user applications such as the mobile tele-

phony and the PIM applications. The second CPU runs

a specialized real time operating system that controls the

mobile phone interface and is called the modem. Themo-

dem handles all communication with the mobile phone

network and provides a control interface to the applica-

tion processor.

Logically the application processor and the modem

communicate through one or multiple serial lines. The

mobile telephony software stack running on the appli-

cation processor and communicates with the modem

through a text-command-based interface using a serial

line interface provided by the operating system running

on the application processor. The physical connection be-

tween the application processor and the modem solely

depends on the busses and interfaces offered by both

sides but is irrelevant for our method.

The modems of our test devices (the iPhone, the HTC

G1 Android, and the HTC-Touch 3G Windows Mobile)

are controlled through the GSM AT command set [4].

The GSM AT commands are used to control every aspect

+CMT: ,22

07916163838450F84404D0110020009030329

02181000704010200088000

Figure 3. Unsolicited AT result code that in-

dicates the reception of an SMS message.

of the mobile phone network interface, from network

registration, call control and SMS delivery to packet-

based data connectivity.

4.1. The Telephony Stack

The telephony stack is the software component that

handles all aspects of the communication between the

application processor and the modem. The lowest layer

in a telephony stack usually is a multiplexing layer to

allow multiple applications to access the modem at the

same time. The multiplexing layer also is the instance

that translates API-calls to AT commands and AT result

codes to status messages. The applications to allow the

user to place and answer phone calls and to read and

write short messages exist on top of the multiplexing

layer.

4.2. SMS Delivery

Short messages are delivered through unsolicited AT

command result codes issued by the modem to the appli-

cation processor. The result code consists of two lines of

ASCII text. The first line contains the result code and the

number of bytes that follow on the second line. The num-

ber of bytes is given as the number of octets after the hex-

adecimal to binary conversion. The second line contains

the entire SMS message in hexadecimal representation.

Figure 3 shows an example of an incoming SMSmessage

using the CMT result code which is used for SMS deliv-

ery on all of our test devices. Upon reception of the mes-

sage the application processor usually has to acknowl-

edge the reception by issuing a specific AT command to

the modem. All interaction to the point of acknowledg-

ing the reception of the CMT result is handled by the mul-

tiplexing layer of the telephony stack.

4.3. The Stacks of our Test Devices

We will shortly describe the parts of the telephony

stack that are relevant for SMS handling on each of our

test platforms.

4.3.1. iPhone OS On the iPhone, the telephony stack

mainly consists of one application binary called Comm-

Center. CommCenter communicates directly with the

3



modem using a number of serial lines of which two are

used for AT commands related to SMS transfers. It han-

dles incoming SMS messages by itself without invok-

ing any other process, besides when the device notifies

the user about a newly arrived message after storing it

in the SMS database. The user SMS application is only

used for reading SMS messages stored in the database

and for composing new messages and does not itself di-

rectly communicate with the modem.

4.3.2. Android On the Android platform the telephony

stack consists of the radio interface layer (RIL) that takes

the role of the multiplexing layer described above. The

RIL is a single daemon running on the device and com-

municates with the modem through a single serial line.

On top of the RIL daemon, the Android phone appli-

cation (com.android.phone) handles the communication

with the mobile phone network. The phone application

receives incoming SMS messages and forwards them to

the SMS and MMS application (com.android.mms).

4.3.3. Windows Mobile In Windows Mobile, the tele-

phony stack is quite a bit larger and more distributed

compared with the iPhone and the Android telephony

stacks. The parts relevant to SMS are: the SmsRouter li-

brary (Sms Providers.dll) and the tmail.exe binary. The

tmail.exe binary is the SMS and MMS application that

provides a user interface for reading and composing

SMS messages. Other components such as the WAP

PushRouter sit on top of the SmsRouter.

5. SMS Injection

Based on the results of our analysis on how SMS mes-

sages are delivered to the application layer, we designed

our SMS injection framework.

Our method for SMS injection is based on adding a

layer between the serial lines and the multiplexer (the

lowest layer of the telephony stack). We call this new

layer the injector. The purpose of the injector is

to perform a man-in-the-middle attack on the communi-

cation between the modem and the telephony stack. The

basic functionality of the injector is to read commands

from the multiplexer and forward them to the modem and

in return read back the results from the modem and for-

ward them to the multiplexer.

To inject an SMS message into the application layer,

the injector generates a new CMT result and sends it to

the multiplexer just as it would forward a real SMS mes-

sage from the modem. It further handles the acknowl-

edgement commands sent by the multiplexer. Figure 4

shows the logical model of our injection framework.

We implemented our injection framework for our

three test platforms. We believe that our approach for

message injection can be easily ported to other smart

Figure 4. Logical model of our injector

framework.

phone platforms if these allow application level access

to the serial lines of the modem or the ability to replace

or add an additional driver that provides the serial line in-

terface.

We noticed several positive side effects of our frame-

work, some of which can be used to further improve the

analysis process. First of all, we can monitor and log

all SMS messages being sent and received. This ability

can be used to analyze proprietary protocols based on

SMS, such as the iPhone’s visual voice mail. The abil-

ity to monitor all AT commands and responses between

the telephony stack and the modem provides an addi-

tional source of feedback while conducting various tests.

On the iPhone, for example, messages are not acknowl-

edged in a proper way if these contain unsupported fea-

tures.

5.1. The Injection Framework

Below we will briefly describe the implementation

issues of the injection framework for each of our tar-

get platforms. Every implementation of the framework

opens TCP port 4223 on all network interfaces in or-

der to receive the SMS messages that should be injected.

This network based approach gives us a high degree of

flexibility for implementing our testing tools independent

from the tested platform.

So far we are able to install our injection framework

on all the test targets and continue to use them as if the in-

jection framework was not installed, therefore giving us

high degree of confidence in our approach.

5.1.1. iPhone On the iPhone, SMS messages are han-

dled by the CommCenter process. The interface for

CommCenter consists of sixteen virtual serial lines,

/dev/dlci.h5-baseband.[0-15] and /dev/

dlci.spi-baseband.[0-15] on the 2G and the

3G iPhone, respectively.

4



The implementation of our injection framework for

the iPhone OS is separated into two parts, a library and

a daemon. The library is injected into the CommCen-

ter process through library pre-loading. The library in-

tercepts the open(2) function from the standard C li-

brary. Our version of open checks for access to the two

serial lines used for AT commands. If the respective files

are opened the library replaces the file descriptor with

one connected to our daemon. The corresponding de-

vice files are the serial lines 3 and 4 on the 2G and 3G

iPhones. The library’s only function is to redirect the se-

rial lines to the daemon. The daemon implements the ac-

tual message injection and log functionality.

5.1.2. Android The implementation for the Android

platform consists of just a single daemon. The daemon

talks directly to the serial line device connected to the

modem and emulates a new serial device through cre-

ation of a virtual terminal.

The injection framework is installed in three

steps. First, the actual serial line device is renamed

from /dev/smd0 to /dev/smd0real. Second,

the daemon is started, opens /dev/smd0real and cre-

ates the emulated serial device by creating a TTY

named /dev/smd0. In the third step, the RIL pro-

cess (/system/bin/rild), is restarted by sending

it the TERM signal. Upon restart, rild opens the em-

ulated serial line and from there on will talk to our

daemon instead of the modem.

5.1.3. Windows Mobile The Windows Mobile version

of our injection framework is based on the simple log-

driver [11] written by Willem Hengeveld. The original

log-driver was designed for logging all AT communi-

cation between the user space process and the modem.

We added the injection and state tracking functional-

ity. To do this, we had to modify the driver quite a

bit in order to have it listen on the TCP port to con-

nect our test tools. The driver replaces the original se-

rial driver and provides the same interface the original

driver had and loads the original driver in order to com-

municate with the modem. The driver is installed through

modifying several keys of the Windows Mobile registry

at: /HKEY LOCAL MACHINE/Drivers/BuiltIn/

SMD0. The most important change is the name of the Dy-

namic Link Library (DLL) that provides the driver for the

interface, whose key is named Dll. Its original value is

smd com.dll.

6. Fuzzing SMS Implementations

Fuzzing is one of the easiest and most efficient ways

to find implementation vulnerabilities. With this frame-

work, we are able to quickly inject fuzzed SMSmessages

IED Byte Index Purpose

0 ID (same for all chunks)

1 Number of Chunks

2 Chunk Index

Figure 5. The UDH for SMS Concatenation.

into the telephony stack by sending them over the listen-

ing TCP port. In general, there are three basic steps in

fuzzing. The first is test generation. The second is deliv-

ering the test cases to the application, and the final step

is application monitoring. All of these steps are impor-

tant to find vulnerabilities with fuzzing.

6.1. Fuzzing Test Cases

We took a couple of approaches to generating the

fuzzed SMS messages. One was to write our own Python

library which generated the test cases while the other was

to use the Sulley [1] fuzzing framework. In either case,

the most important part was to express a large number of

different types of SMS messages. Below are some exam-

ples of the types of messages that we fuzzed.

Basic SMS Messages As from Figure 1, we fuzzed vari-

ous fields in a standard SMS message including elements

such as the sender address, the user data (or message),

and the various flags.

Basic UDH Messages As seen in Figure 2, we fuzzed

various fields in the UDH header. This included the UDH

information element and UDH data.

Concatenated SMS Messages Concatenation pro-

vides the means to compose SMS messages that exceed

the 140 byte (160 7-bit character) limitation. Concate-

nation is achieved through the User Data Header type

0 as specified in [2]. The concatenation header con-

sist of five bytes, the type (IEI), the length (IEDL),

and three bytes of header data (IED) as seen in Fig-

ure 5. By fuzzing these fields we force messages to arrive

out of order or not at all, as well as sending large pay-

loads.

UDHPort Scanning SMS applications can register to re-

ceive data on UDH ports, analogous to the way TCP and

UDP applications can do so. Without reverse engineer-

ing, it is impossible to know exactly what ports a partic-

ular mobile OS will have applications listening on. We

send large amounts of (unformatted) data to each port.

The structure of the UDH destined for particular appli-

cations of designated ports is indicated in Figure 6.

Visual voice mail (iPhone only) When a visual voice

mail arrives, an SMS message arrives on port 5499 that

5



IED Byte Index Purpose

0 - 1 Destination Port (16bit)

2 - 3 Source Port (16bit)

Figure 6. The UDH for SMS Port Address-

ing.

contains a URL in which the device can receive the ac-

tual voice mail audio file. This URL is only accessible

on the interface that connects to the AT&T network, and

will not connect to a generic URL on the Internet. The

URL is clearly to a web application that has variables en-

coded in the URL. We fuzz the format of this URL.

6.2. Delivery

Once the test cases are generated, they need to be de-

livered to the appropriate application. In this case, due

to the way we have designed the testing framework, it is

possible to simply send them to a listening TCP port. All

of this work is designed to make it easy to deliver the test

cases.

6.3. Monitoring

It does no good to generate and send fuzzed test cases

if you do not know when a problem occurs. Device mon-

itoring is just as important as the other steps. Unfortu-

nately, monitoring is device dependent. There are two

important things to monitor. We need to know if a test

case causes a crash. We also need to know if a test case

causes a degradation of service, i.e. if the process does

not crash but otherwise stops functioning properly.

On the iPhone OS, the crash of a process causes a

crash dump file to be written to the file system com-

pliments of Crash Reporter. This crash dump can be re-

trieved and analyzed to determine the kind and position

of the crash. In between each fuzzed test case, a known

valid test case is sent. The SMS database can be queried

to ensure that this test case was received and recorded.

If not, an error can be reported. In this fashion, it is pos-

sible to detect errors that do not necessarily result in a

crash.

The Android development kit takes a different ap-

proach by suppling a tool called the Android Debug

Bridge (ADB), this tool allows us to monitor the system

log of the Android platform. If an application crashes on

Android the system log will contain the required infor-

mation about the crash. If a Java/Dalvik process crashes,

it will contain information including the back trace of the

application.

The Windows Mobile development kit on the other

hand provides the tools for on-device debugging. This

means Windows Mobile allows traditional fuzzing by at-

taching a debugger to the process being fuzzed.

6.4. Fuzzing Results

Our iPhone OS target was running software ver-

sion 2.2. One of the flaws we discovered here is a

null pointer dereference in the handling

code of Flash-SMS messages. The flaw causes Spring-

Board (the iPhone OS window manager) to crash forc-

ing the user to slide to unlock his iPhone. For

Android, the targets were the development firmware ver-

sions 1.0, 1.1 and 1.5. Here we found several flaws that

cause an array index out of bounds excep-

tion. Multiple of the flaws cause com.android.phone to

crash and thereby disconnect the phone from the mo-

bile phone network. The fuzzing of our WindowsMobile

device is still work in progress.

In order to determine if a specific flaw can be ex-

ploited the particular SMS message needs to be sent over

the mobile phone network. If the message is delivered to

the target, and was not modified in the process, it can be

utilized for an attack.

7. Conclusions

We presented a novel method for performing vulnerabil-

ity analysis of SMS-implementation on smart phones.

Our method removes the cost factor and thus enables

large scale fuzz-based testing. In addition, it removes the

intermediate infrastructure that otherwise would make

obtaining conclusive results difficult. Removing the in-

frastructure further creates the possibility to discover

flaws that could not haven been discovered through test-

ing using a service providers infrastructure. Through the

use of our testing tools, we identified a number of vulner-

abilities that can be abused for critical Denial-of-Services

attacks.

Future work will focus on porting our framework to

other mobile phone platforms for testing and analyzing

more SMS-implementations. We further believe that our

injection framework can be used beyond the focus of

fuzz-based testing, since it provides an unfiltered and

cost free path for delivering SMS messages to a smart

phone.

Acknowledgments

The authors would like to thank Willem Hengeveld for

his kind help with his Windows Mobile log-driver.

6



References

[1] Sulley - Pure Python fully automated and unattended

fuzzing framework. http://code.google.com/

p/sulley/.

[2] 3rd Generation Partnership Project. 3GPP TS 23.040

- Technical realization of the Short Message Service

(SMS). http://www.3gpp.org/ftp/Specs/

html-info/23040.htm, September 2004.

[3] B. Jurry XFocus Team. Siemens Mobile SMS Ex-

ceptional Character Vulnerability. http://www.

xfocus.org/advisories/200201/2.html,

January 2002.

[4] European Telecommunications Standards Institute

(ETSI). GSM 06.06 (ETS 300 642): Digital cel-

lular telecommunication system (Phase 2); AT

Command set for GSM Mobile Equipment (ME).

http://www.etsi.org, 1999.

[5] J. de Haas. Mobile Security: SMS and a lit-

tle WAP. http://www.itsx.com/hal2001/

hal2001-itsx.ppt, August 2001.

[6] C. Mulliner and G. Vigna. Vulnerability Analysis of

MMS User Agents. In Proceedings of the Annual Com-

puter Security Applications Conference (ACSAC), Miami,

FL, December 2006.

[7] O. Whitehouse @stack Inc. Nokia Phones Vulnerable

to DoS Attacks. http://www.infoworld.com/

article/03/02/26/HNnokiados_1.html,

February 2003.

[8] Oulu University Secure Programming Group. PRO-

TOS Security Testing of Protocol Implementations.

http://www.ee.oulu.fi/research/ouspg/

protos/, 2002.

[9] T. Engel. Remote SMS/MMS Denial of Service - Curse

Of Silence. http://berlin.ccc.de/˜tobias/

cursesms.txt, December 2008.

[10] W. Enck, P. Traynor, P. McDaniel and T. La Porta. Ex-

ploiting Open Functionality in SMS-Capable Cellular

Networks. In Conference on Computer and Communi-

cations Security, 2005.

[11] W. J. Hengeveld. Windows Mobile AT-command

log-driver. http://nah6.com/˜itsme/

cvs-xdadevtools/itsutils/leds/logdev.

cpp.

7


