Design and Implementation of Views: Isolated Perspectives of a File System

Matthew W. Pagano

Zachary N. J. Peterson

The Johns Hopkins University
Baltimore, Maryland, USA
{mpagano,zachary } @cs.jhu.edu

Abstract

We present Views, a file system architecture that provides
isolation between system components for the purposes
of access control, regulatory compliance, and sandbox-
ing. Views allows for discrete I/O entities, such as users,
groups, or processes, to have a logically complete yet
fully isolated perspective (view) of the file system. This
ensures that each entity’s file system activities only mod-
ify that entity’s view of the file system, but in a trans-
parent fashion that does not limit or restrict the entity’s
functionality. Views can therefore be used to monitor
system activity based on user accounts for access control
(as required by federal regulations such as HIPAA), pro-
vide a reliable sandbox for arbitrary applications with-
out inducing any noticeable loss in performance, and en-
able traditional snapshotting functionality by manipulat-
ing and transplanting views as snapshots in time. Views’
architecture is designed to be file system independent, ex-
tremely easy to use and manage, and flexible in defin-
ing isolation and sharing polices. Our implementation of
Views is built on ext3cow, which additionally provides
versioning capabilities to all entities. Benchmarking re-
sults show that the performance of Views is nearly iden-
tical to other traditional file systems such as ext3.

1 Introduction

The need to reliably isolate, analyze, and potentially
snapshot various file system states exists in many envi-
ronments today. One particularly salient example is that
of medical security, in which there has been a recent im-
petus to convert highly sensitive paper medical records
into electronic format. The Health Insurance Portabil-
ity and Accountability Act of 1996 (HIPAA) was writ-
ten to develop standards for the normalization of indi-
vidual health records and to encourage the use of elec-
tronic records pursuant to these goals. To protect the

This work was supported in part by Independent Security Evalua-
tors, Baltimore, Maryland, USA.

sensitive data these health records can hold from unau-
thorized modifications, HIPAA includes provisions that
address the way patient medical records are accessed and
stored. Specifically, HIPAA mandates the use of access
control mechanisms designed to monitor the activity of
individual system users, thereby protecting the privacy of
patient information [12]. Fulfilling this mandate requires
the ability to efficiently and reliably isolate and identify
the actions of each individual user on a multi-purpose,
multi-user workstation or server.

Similarly, the need for isolation between system com-
ponents is paramount when testing applications or pro-
cesses. Researchers often need to monitor the behavior
of applications running on their systems such that: 1)
they are guaranteed that they can record all of the applica-
tion’s behavior; 2) they can prevent any undesirable data
modification; and 3) they can completely undo all of the
application’s actions without the threat of missing some
covert or obscure behavior. This scenario is often found
in research pertaining to malware, virtualization, honey-
pots and honeynets, software quality assurance, and sys-
tem benchmarking and performance testing. In each, the
researcher requires concrete assurance that she can de-
pendably monitor all modifications made by a particular
user or application. It is worth noting that each of these
examples has its own set of requirements. In fields such
as malware and honeypot research, the threat model de-
scribes an adversary who is actively endeavoring to sub-
vert the safeguards implemented by the researcher. Any
such solution must therefore be robustly and securely im-
plemented at a low level to thwart such tampering, espe-
cially if the testing system is connected to legitimate sys-
tems. In software quality assurance and benchmarking,
system speed and performance is a high priority in or-
der to provide a realistic testing environment, so isolation
strategies such as virtualization might not be acceptable.

Once isolation between system components is
achieved, the researcher may need to save the state of
a given component for development, offline analysis,
future use/restarting from some point in time, or trans-

plant to a different environment. This is often the case
in application and process checkpoint and recovery
solutions, virtual machine analysis and migrations, and
database management (especially if databases are to be
operated on and modified in parallel). Each scenario
requires some means of isolating and snapshotting a
certain system component in a comprehensive, portable
manner.

Regardless of the environment and chosen solution,
what is needed in each case is a method of reliably mon-
itoring and controlling file system access, as well as pre-
venting and undoing unauthorized data modification. In
traditional file systems, such as ext3 or NTFS, unau-
thorized modifications to data are commonly prevented
through kernel-enforced permissions or access control
lists. This is usually implemented by storing metadata
within inodes that lists the users who may access the data.
However, even in cases where modifications are autho-
rized, unforeseen problems may arise. This is because all
users, groups, and processes share the same namespace;
that is, they have the same view of the data. For most
file system applications, this is preferential because it en-
ables data sharing (e.g. applications and configuration
files) and avoids wasting disk space with many copies of
the same data. The ease with which data can be shared,
though, can be detrimental when dealing with sensitive
information, (e.g. accidentally copying a health record to
the /tmp directory may make it accessible to all users).
Another obvious drawback to this architecture is that any
changes to application data, be they benign or malevo-
lent, are seen by all users. For example, a trojan horse
unintentionally installed by a single user could affect all
who use that system.

We present the design and implementation of Views,
a system for providing isolated yet logically complete
perspectives of a file system. These isolated perspec-
tives can be used to achieve the needs of the scenarios
described thus far in a reliable, efficient manner. The pri-
mary design goal of Views is to provide every entity in
the system with its own isolated view of the file system.
We define an entity to be anything that can perform I/O
within the file system. An entity can be a user, group,
process, family of processes, efc. A view is a logically
complete perspective of the file system; every entity sees
the entire file system hierarchy. Any data modifications
made by an entity are, by default, only viewable by that
entity. In one extreme example, a user can perform an
rm —rf / operation without affecting any other user.
Views features a robust policy management mechanism,
allowing namespaces to be customized for every entity.
Providing data isolation at the file system level within
the kernel allows for increased security (as opposed to
implementing the isolation in user space), ease of use for
the administrator and system users as all of the logic is

pre-configured in the file system (as opposed to a revi-
sion control system that requires additional configuration
and management), resource efficiency and low overhead
as only the file system blocks that are modified between
views are copied and rewritten, as well as a high degree
of confidence in the isolation since it is performed deter-
ministically at the file system level (as opposed to using
heuristics that may not be 100% accurate). Furthermore,
Views supports temporal policies that dictate how long
a view is valid. For example, an entity that is suspected
of misbehaving may be analyzed and all modifications it
has made to the file system easily purged.

To minimize performance and storage overheads,
Views uses a copy-on-write mechanism to store only the
blocks that have been modified, although copy-on-write
functionality is not a requirement for our implementation.
Because Views is implemented in the kernel, it provides
throughput performance that compares well to an unmod-
ified file system, as we discuss in Section 5.

Our overall design is largely file system independent
in that it relies only upon Linux’s built-in Extended At-
tribute interface [2]. As this is currently the only require-
ment of Views, Views can be implemented on a wide va-
riety of file systems. Views does not modify any ker-
nel interfaces, requires no special software, and is com-
pletely transparent to the user. Since Views is imple-
mented in the kernel, it obtains an additional protection
mechanism when compared to a user space implementa-
tion. Our design is indiscriminate of backup and restore
techniques and allows for easy integration into informa-
tion life-cycle management systems.

We have implemented Views in the ext3cow file sys-
tem [7]. Ext3cow is a freely-available, open-source ver-
sioning file system (available at: www.ext3cow.com)
that is designed to meet other regulatory compliance re-
quirements, such as fine-grained data authenticity and en-
cryption.

2 Related Work

Views is designed to incorporate three prevailing tech-
niques in current operating systems research: kernel
modification to improve security, isolation between 1/O
entities via distinct namespaces, and versioning of files
to achieve regulatory compliance. There has been sig-
nificant research in each of these three areas. Security-
Enhanced Linux (SELinux) [4] is a system created by the
National Security Agency to introduce a flexible manda-
tory access control (MAC) architecture to Linux. As with
Views, SELinux modifies the Linux kernel by imple-
menting the native extended attribute structure to assign
labels to the entities of a file system. Using these labels,
SELinux can determine what are permissible interactions
between entities based on customizable security policies.

Mounts [3] is a system designed by Al Viro that uses the
mount operation to create isolated file system names-
paces for each user. Because the isolation in the original
design was too restrictive, Mounts has been further de-
veloped to include shared mounts when data needs to be
shared in a two-way mode, and slave mounts when data
needs to be shared in a one-way mode. Users can define
the location and nature of each mounted file system using
pluggable authentication modules and scripts for system
startup and user creation. Lastly, versioning file systems
have been developed that provide simple procedures and
effective means of revision control [5, 9, 10] and regu-
latory compliance [7]. These types of systems generally
support versioning mechanisms that allow users to easily
create and review versions of a given file.

SELinux is effective at preventing unwarranted expo-
sure of data within a system, but its vast policy configu-
rations can be labor-intensive to administer. This can po-
tentially impede vital functionality if it is mismanaged.
Furthermore, the system still has only one file system, so
no namespace isolation is achieved. If a policy is mis-
configured, data can be left exposed as all entities still
operate within the same file system. Views can be used
to extend and simplify the functionality of an SELinux-
enabled kernel by creating distinct yet complete file sys-
tems for each entity. This will guarantee by default that
an entity cannot access the file system of another en-
tity, but that each entity retains full access to the data it
needs to perform its functions. This level of protection is
provided automatically and with no further configuration
needed as soon as the file system is created.

Unlike SELinux, Mounts does achieve a level of file
system isolation. However, current documentation on
Mounts focuses mainly on isolation based on user ac-
counts. Moreover, the isolation in Mounts is created by
calling the mount operation from user space. In contrast,
Views is implemented on an open-ended framework that
allows isolation for any entity that performs I/O on the
system, such as users, groups, individual processes, fam-
ilies of processes, etc. Views also achieves a finer and
more robust degree of isolation at a lower level by cre-
ating inode hierarchies in the file system on disk. By
using defined policies, the administrator can define a cus-
tomized view as well as set a time-to-live for any entity,
so views are as temporal or permanent as the administra-
tor chooses. Views is also designed to be independent of
any versioning model and capable of being implemented
in a wide variety of system designs.

In Ventana [8], Pfaff et al. propose a system that pro-
vides centralized management of virtual machines dis-
tributed across a network. Ventana allows users on sepa-
rate workstations to set up private or shared branches of
a file system, create virtual machines using a particular
view of a file system, version these views, and govern the

corresponding access controls. Views differs from Ven-
tana in that the isolation and branching of separate views
results from creating inode hierarchies at a low-level on
disk, as opposed to using virtualized machines. This en-
ables Views to offer almost native I/O speeds, minimize
overhead, and provide fine-grained isolation of entities.
In addition, because Views is implemented at the ker-
nel level, there is no need for additional configuration or
management once the file system is installed.

Finally, virtual machines have become a popular way
to isolate I/O entities. A wide variety of virtual ma-
chine products are currently available for both high-end
servers and end-user machines. Virtual machines have
allowed administrators to provide both isolated disk im-
ages, which provide total data isolation, and copy-on-
write functionality [13], which provides block-level iso-
lation. Managing a virtual machine environment, how-
ever, is imperfect. Virtual machines can add complexity
to system management and licensing, can add a layer of
abstraction to devices that may limit features and perfor-
mance, and can be difficult to scale.

3 Views Architecture

Views is built on top of the ext3cow file system [7].
Ext3cow is a variant of the ext3 file system [1] that pro-
vides file versioning accessed through a time-shifting in-
terface, authenticated encryption, and other technologies
designed to meet regulatory compliance. Ext3cow is an
effective platform for a Views implementation as it pro-
vides versioning capabilities and supports Linux’s Ex-
tended Attributes API (the only requirement of Views).
Extended Attributes are a file system facility available in
certain file systems such as ext3cow that provide a means
to associate additional metadata with files and directories.
Extended Attributes, often abbreviated as xattr, have been
used for implementing access control lists [2] and secu-
rity tags in SELinux [4].

Figure 1 shows an example of isolated views for two
users. Each user has a logically complete view of the file
system, so there is no loss of functionality for any of the
system’s entities. For example, both users currently share
a view of the bin/ directory, thus providing both users
with all system utilities present in this folder. If one of
the users (say the matt user) modifies a file in the bin/
directory, that modified file becomes part of the view be-
longing to matt. However, this file modification is not
made to the corresponding file in the bin/ directory of
the view belonging to the zachary user, as happens in
traditional file systems that provide only one namespace
for all users.

As depicted in Figure 1, suppose matt creates a direc-
tory foo/. This directory then exists only in his view.
zachary is completely unaware that the foo/ folder

test.txt

matt@localhost$ mkdir foo
matt@localhost$ echo 'hil!' > test.txt
matt@localhost$ cat test.txt

hit

test.txt

zachary@localhost$ mkdir bar
zachary@localhost$ echo 'bye!'
zachary@localhost$ cat test.txt
bye!

> test.txt

Figure 1: An example of Views’ isolation model.

exists in the file system. Next, zachary creates a direc-
tory named bar/. Once again, this directory exists only
in the view of zachary and is fully unknown to matt.
Lastly, both users create a file with the name test . txt,
but while the same name appears in both views, they rep-
resent different files with different contents.

3.1 File Views

In most file systems, every file has a single inode that
contains that file’s metadata, including modification time,
permissions, and pointers to the file’s data blocks. If
the file system supports Extended Attributes, the inode
also contains space or a block pointer in which to store
Extended Attribute information — typically a name-value
pair. This Extended Attributes feature is the only require-
ment for a Views implementation, although in theory the
data stored in the Extended Attributes for Views can be
stored elsewhere in the inode if there is sufficient free
space.

When a Views file system is created by the root user,
every original file is represented by a single inode. We
call this base file system the master view and each inode
a master inode. The master inode may be changed over
time, for system maintenance for example (see Section
3.3), but it represents the basis from which all additional
views are created.

When an entity makes an initial modification to a file
in the master view, a new view for that entity is created.
To create a new view, a new entity inode is allocated, the
metadata from the master inode is copied into the new
entity inode, and the entity inode is linked to the master
inode with an extended attribute (see Figure 2). Views for
a file are represented by entity-inode pairs stored as ex-
tended attributes. When the file is modified by an entity,
all modifications are recorded in the corresponding entity
inode, isolating the changes to only that entity’s view.

As shown in Figure 2, suppose that a Views file sys-
tem has been created (thus a master view is in place).
Further suppose that matt and zachary are two users

on this system. Both matt and zachary access a mas-
ter file whose metadata is captured in a master inode of
inode number (i_ino) 211. If matt or zachary ac-
cesses this file in a read-only fashion (checked using the
flags of the nameidata data structure associated with
the lookup of that file), they are given the master inode.
No entity inode is created for them in read-only accesses
to conserve inodes in use and to avoid unnecessary sys-
tem overhead (e.g. a Views file system creating entity
inodes for each inode in a large directory every time an
entity runs an 1s command). Moreover, the correspond-
ing directory entry (dentry) structures that are created for
matt and zachary linking them to the master inode
are assigned a read-only metadata character. This is done
to prevent future write accesses made to this file by these
(non-root) entities from being saved to the master inode.
Further discussion on how we modify the dentry system
is given in Section 3.2.

Now suppose that matt requests write access to the
master file corresponding to master inode 211. An ex-
tended attribute name-value pair is then created formatt
in master inode 211. The name in the name-value pair
is the user ID of matt, which as shown in Figure 2 is
1001. The value in the name-value pair is the inode num-
ber of the entity inode that is created for matt for this
file (721). If the entity inode of this file in matt’s en-
tity view needs to be retrieved later, the names of the
extended attribute name-value pairs of master inode 211
can be searched for matt’s user ID (1001). If this user
ID is found, the value of that name-value pair yields
the inode number of the proper entity inode. A simi-
lar situation transpires if zachary modifies the master
file corresponding to master inode 211: an extended at-
tribute name-value pair is added to master inode 211 in
which the name is zachary’s user ID (1002) and the
value is the inode number of the entity inode created for
zachary (429).

We improve upon ext3cow’s copy-on-write model to
achieve Views. All data modifications made to an en-
tity inode are copy-on-written: a new block is allocated

Master Inode Extended Attribute zachary Inode

i_ino 211 ID for matt - 1001 > 429
VNN 1D for zachary - 1002 NN
i_data[0] Data* Data*

i _data[l] Data* P Data*
Lo e Inode for zachary* - 429 Lo
NN\ NN\

i data[10] Data* Inode for matt* - 721 '_
i_data[1ll] Data*
i data[l2] Single Ind. matt Inode
Data*
i_data[13] D‘)letzi“d' | 721
i data[14] Triple lrld.
Data* ZAVAVAVAN
M Data*
i_file_acl xattr# - Data*
ARAAR ARAA

Figure 2: Architecture of Views using extended at-
tributes.

for the modification and the old blocks are preserved as
part of the master view. When an entity modifies a data
block, the new block is stored only in that entity’s in-
ode, and therefore viewable only by that entity. Because
new blocks are allocated only for the individual blocks
that change between master and entity views, Views is
highly efficient with respect to storage and performance,
as demonstrated in Section 5.

When an entity creates a file (thus the file does not
currently exist in the master view), only a single inode is
allocated. Because the name and inode are not accessible
by any other entity and the file is not part of the master
view, no master inode or extended attribute is created or
needed.

3.2 Directories and Naming

In addition to having isolated data modifications, enti-
ties may also modify the file system namespace in iso-
lation. This is easily accomplished in Views as directo-
ries are simply inodes whose data are directory entries.
Name modifications (additions, removals, or changes to
a name) by an entity to a directory that has a master in-
ode (i.e. part of the master view) creates an entity inode
and extended attribute entry, similar to what is shown in
Figure 2. Likewise, any name modification to a directory
created by an entity (thus that directory exists only in that
entity’s view) results in only a single directory inode.

To perform a lookup of a name in Views, the file sys-

Is parent directory
inode master or
entity?

Enti/ \n‘aster

Perform standard
lookup on entity
view for that entity

Is the user
root?

Yes No

Mark dentry master; Mark dentry entity and save
Perform standard master inode number to it;
lookup on master Examine master inode's

view extended attributes

Are there extended
attributes for this
entity?

Is operation read-
only? Check
nameidata flags

Match found; return
entity inode # from
master inode's
extended attributes

Return master
Return file not inode; mark
found error dentry as read-
gnlv

Figure 3: The lookup process on a Views file system.

tem reads the inode of the parent directory. The inode
may be a master inode if the parent directory is part of
the master view, or an entity inode if the parent direc-
tory is part of an entity view. If the parent directory is an
entity inode, a normal lookup is performed on the entity
view for that entity. If the parent directory is a master
inode and the entity performing the lookup is the root
user, a normal lookup is performed on the master view
for the root user. If the parent directory is a master in-
ode and the entity performing the lookup is not the root
user, the file system searches the extended attributes of
the master inode of corresponding name for an identi-
fier that matches that entity. If a matching identifier is
found, the entity inode corresponding to that identifier in
the master inode’s extended attribute name-value pair is
returned. If no identifier is found and the operation is not
read-only (checked using the flags of the nameidata
data structure associated with the lookup), the file system
returns a file not found error. Conversely, if no identi-
fier is found but the operations is read-only, the master
inode of the corresponding name is returned for purposes
of efficiency, as discussed in Section 3.1. In this case,
the corresponding directory entry (dentry) structure that
is created linking that entity to the master inode is marked
as read-only, as shown in Figure 4. This is done to pre-

Dentry d_fsdata

d_flags

NN\

User ID

Group ID

d_inode

NN

i Read-Only?

Master or Entity?
d_parent

Master Inode No. (if entity)

d_name

d_fsdata

Figure 4: Visual representation of how the directory en-
try (dentry) structure is modified for Views during the
lookup process. Specifically, the d_fsdata parameter
is modified to include the information shown on the right.
This information is added to the d_f sdat a parameter as
soon as the dentry structure associated with the lookup is
passed to the ext3cow_lookup function for on-disk
inode searches.

vent future write accesses made by that (non-root) entity
to that file from being performed on the master inode.
The dentry structure for this lookup is also marked as
either master or entity depending upon whether the cor-
responding inode is in the master view or an entity view,
respectively. This process is shown in Figure 3.

Because the same name can exist in different views but
represent different data (as shown with the test.txt
file in Figure 1), further modifications to the dentry sys-
tem are necessary. This is achieved by writing the fol-
lowing items to the filesystem-specific data parameter,
d_fsdata, of a given dentry structure as soon as the
dentry is passed to the ext 3cow_lookup function for
on-disk inode searches, as shown in Figure 4.

e The user ID of the entity that owns the dentry.

The group ID of the entity that owns the dentry.

Whether the dentry is read-only or not.

Whether the dentry points to a master or entity in-
ode.

If the dentry points to an entity inode, the inode

Is dentry Views?
Check magic # of
dentry superblock

7%

Continue w/
standard
dcache search

Do user IDs
match?

Do operation types

match? Check
nameidata flags

7 S

Match found

Go to next
dentry in cache

Go to next
dentry in cache

Figure 5: Our modified dentry cache (dcache) search pro-
cess.

number of the master inode to which that entity in-
ode belongs.

The dentry cache (dcache) search is then modified as
follows. First, it is determined whether the cached den-
try being analyzed belongs to a Views partition. This
is checked using the magic number of the cached den-
try’s superblock. Next, a comparison is performed be-
tween the IDs of the entity searching the cache and the
IDs stored in the d_fsdata parameter of the cached
dentry. A comparison is also made between the opera-
tion type (i.e. read-only or not read-only) stored in in
the d_fsdata parameter of the cached dentry and the
operation type of that particular lookup (checked using
the flags of the nameidata data structure associated
with the lookup). If the IDs and the operation types both
match, our modified dcache search returns the valid den-
try. Otherwise, our search moves on to the next dentry in
the cache in search of a match. This procedure is shown
in Figure 5.

3.3 Policies of Views

The root user is a special entity in Views. In particular,
the root user controls the master view. By default, the
root user sees only the master view, but has the ability
to see all entity views through an additional API or by
using the su, or switch user, command. By using
su to switch user accounts to a different user, the root
user’s view easily and automatically changes to the en-
tity view of that user. This is demonstrated in Figure 6,
which shows the root user switching into the entity views

test.ixt

Entity View of Matt User

test.txt

Entity View of Zachary User

root@localhost$
matt@localhost$
hit

matt@localhost$
root@localhost$

su matt
cat test.txt

exit
su zachary

zachary@localhost$ cat test.txt

bye!

Figure 6: Demonstration of how the root user can easily switch into the entity views of each user by invoking the su
command. This assumes the same file system as shown in Figure 1.

of the matt and zachary user accounts and viewing
the data of each’s entity inodes (assuming the file system
described in Figure 1). This functionality can be used by
the root user to update/upgrade/maintain the entity views
of other users on the system. For example, if an appli-
cation such as SSH is reported to contain a vulnerability
for which a patch has been recently released, the root user
can use su to switch into the entity views of all users on
the system to install the patch on all views. This process
can be automated with the use of a simple script. Future
work for Views includes development on an additional
API that can further automate this process.

When the root user adds a file or directory, it automat-
ically becomes part of the master view for all future en-
tities. This allows the root user, for example, to perform
system-wide modifications and maintenance for the mas-
ter view and for all future views. It is important to note
that additions, removals, or changes to the master view
do not by default affect an entity’s pre-existing view. Said
another way, if an entity has modified a view for a file and
the master view changes above it, the entity’s view is un-
changed. Only future views see the master view changes
to ensure view consistency for all entities.

3.4 Views and Versioning

In addition to access controls based on individual user
activity, federal legislation such as HIPAA, Sarbanes-
Oxley, and HITECH, requires an auditable trail of
changes that are accessible in real time. This requirement
mandates the use of versioning in a file system. Views fits
well into ext3cow’s versioning model, shown in Figure 7.
In ext3cow, versioning is achieved by creating a new in-
ode for every version, copying all the metadata informa-
tion to the new inode (including data block pointers), and
updating the fields only when data is changed in a copy-

on-write fashion. By copying the data block pointers to
the new inode, the new version continues to use the same
data blocks until modifications are made. This is done to
minimize overhead, as opposed to copying all data blocks
for each new version regardless of whether the user actu-
ally makes any modifications to the file. If the user does
make modifications, new data blocks are allocated in a
copy-on-write fashion, but only for the data blocks that
are actually modified in order to increase efficiency.

Modifications to an inode’s data blocks are tracked via
a copy-on-write bitmap named i_cowbitmap. Specif-
ically, i_cowbitmap contains a bit for each data block
belonging to the inode that states either that the block
should be updated in place, or that a new block should
be allocated in the event of an update. In the case of
the latter, the old block is permanently retained for pre-
vious versions in the version chain. Versions of a file
are implemented by chaining inodes together via a linked
list, where each inode represents a version. Each in-
ode contains a pointer named i_next inode that points
to the next inode in the versioning chain. Inodes are
given a time-stamp named i_epochnumber that iden-
tifies the period of time to which that version belongs.
i_epochnumber is updated if the data of that inode is
modified.

To find a particular version, users perform a lookup on
a file name at a given time. The file system traverses the
inode chain for that file until it finds an inode that has
the desired time-stamp. This in turn generates a point-in-
time view of a file.

Implementing Views in ext3cow allows an entity to
have an isolated view of a file as well as enjoy versioning
capabilities. Every master and entity inode is capable of
maintaining a version chain without affecting any other
entity’s view.

Entity inodes that do not have a corresponding master

Inode #8 Inode #211 Inode #1978

i ino

1978

i_epochnumber |

i_cowbitmap |

i_nextinode !

,,,,,,,,

Figure 7: Visual representation of the inode structural
changes made by ext3cow to support versioning. Be-
cause Views is built on ext3cow, Views also enjoys this
level of versioning.

inode (i.e. files that are created by an entity that did not
previously exist in the master view) are versioned as any
file is versioned in ext3cow (See Peterson [7]). For files
that are part of the master view (i.e. have a master in-
ode), versioning becomes more interesting. All entities,
including the root user, are entitled to versioning and no
modification by any entity should affect another. To ac-
complish this, versioning within Views requires a parallel
metadata structure. This is achieved because when new
versions of a file are created, the inode metadata that is
copied from the older inode to the new inode includes
the extended attributes of the older inode. As a result, the
new version of a master file becomes aware of all entity
inodes belonging to the older version of that master file.
This is necessary to ensure the continuity of entity views
as version-snapshots are taken. Moreover, by examining
a previous version of a master file at a particular time in
the past, the root user can also observe all entity views of
the master file at that time.

Figure 8 shows the metadata structure of a versioned
view. We start with version 8 of the master inode, which
has no entity views. At some point later, a version-
snapshot is taken and the root user modifies the master in-
ode, resulting in a new master inode (Version 9) chained
to its previous versions. Additionally, Entity 1 creates a
view of the file, resulting in her own entity inode (Entity
1 Version 1). Later, another version-snapshot is taken and
the root user again modifies the master inode, leading to
another inode in the version chain (Version 10). As dis-
cussed, the extended attributes of the master inode Ver-
sion 9 are among the metadata copied into the master in-
ode Version 10, so the master inode Version 10 becomes
aware of all current entity views. In this example, this
is entity inode Entity 1 Version 1. Independently, Entity
1 makes changes to her view of the file (Entity 1 Ver-
sion 1), and because these changes occur after a version-
snapshot, a new inode is allocated for her (Entity 1 Ver-
sion 2). Lastly, a separate entity (Entity 2) creates a new
view of master inode Version 10, and thus an entity inode
is created for her (Entity 2 Version 1). It is important to

remember that master inode Version 10 and entity inode
Entity 1 Version 2 may store completely different data.
Both versions exist because both the root user and Entity
1 performed modifications to their respective views after
a version-snapshot.

The addition, removal, and modification of names over
time are also supported by Views. Names in ext3cow are
scoped to times using additional metadata in the directory
entry (dirent) structure. Every dirent contains birth and
death time-stamps, defining a period of time for which
that name is valid. This allows file names to be added,
removed, and re-added over time while maintaining past
data. Should an entity add or remove a name, a new en-
tity inode is created and the corresponding dirent is mod-
ified. Because Views provides individual entity directory
inodes, all names scope properly, even if they are used by
other entities or re-used by the same entity.

4 Use Cases

We show the benefits and utility of Views in the following
use cases.

4.1 Regulatory Compliance

As discussed in Section 1, Views has strong appli-
cation within regulatory compliance standards such as
HIPAA and HITECH. The National Institute of Stan-
dards and Technology (NIST) released a special publi-
cation in October 2008 that offered guidance on imple-
menting the measures required by the HIPAA Security
Rule [6]. Many of the technical safeguards described in
this document are user-based access controls that must
be deployed on all electronic devices that handle medi-
cal records. These controls, as well as how Views can
be implemented to facilitate these controls, are detailed
below.

Ensure that system activity can be traced to a spe-
cific user. Views completely isolates all file system mod-
ifications of each user into their own individual views that
are accessible only by that user and the root user. Conse-
quently, Views allows administrators with root-user priv-
ileges to easily monitor all file system activities of each
user. Since Views is implemented within the kernel at the
file system level, users of the system are unable to sub-
vert the isolation mechanisms unless they can success-
fully rewrite the file system in the kernel. Future work
for Views will allow an administrator with root-user cre-
dentials to easily print and organize a list of all file system
changes and the associated metadata made by each user
(see Section 6 for more details).

Specify requirements for access control that are
both feasible and cost-effective for implementation.

Master
Inode

Version | Version o Version |
"""" 1o " > 8 >
Extended L +
Attributes Entity 1 Entity 1 Entity
Inode
Entity 2 Entity A N
Inodes (71 Entity 1
Laaan) Version
(TN | Entity 2 1
Inode 2 . .
1| Entity 1 Entity 1
Inode 1 Version | Version
— 2 1

Figure 8: The metadata to support versioning of Views.

Views provides an immediate form of isolated yet logi-
cally complete views of a file system that can be read-
ily implemented to achieve user-based access controls.
Because these views are logically complete, no user or
application is denied any of its functionality. In addi-
tion, Views is open-source and freely available. Installing
Views is identical to installing the ext3 file system, and
all of the protections of Views are provided immediately
by default with no further action by the administrator.
Section 5 shows that there is almost no penalty of per-
formance in using Views over ext3.

Implement a mechanism to encrypt and de-
crypt EPHI [electronic protected health information].
Views is built on top of the ext3cow operating system
and thus enjoys all of the benefits of ext3cow by default.
As discussed in previous work on ext3cow [7], ext3cow
offers full support for authenticated encryption.

Implement Audit/System Activity Review Process /
Activate necessary audit system. Views retains all of
the functionality of ext3cow. As discussed in Section
3.4, ext3cow (and thus Views) satisfies the auditing re-
quirements of HIPAA through its versioning capabilities.
In addition, Views provides administrators with a sim-
ple mechanism of isolating all changes made to the file
system by each individual user. Auditing all file system
modifications made by any user is therefore an easy and
automatic process with Views.

Implement electronic mechanisms to corroborate
that EPHI [electronic protected health information]
has not been altered or destroyed in an unauthorized
manner [i.e. integrity]. Views ensures that all changes
made by a user are restricted to the file system view of
that user only. All other versions of a file are unmodi-
fied in the views of all other users. As a result, users are
unable to modify the master view, which is always avail-
able to the root user for review and for comparisons with
each of the users’ views to evaluate their changes. Impor-

tant medical data that should not be erased can be saved
to the master view or to a backup user account created
by the administrator for this purpose. This ensures the
integrity of all data stored on the system.

Beyond regulatory compliance, the ability of Views
to isolate file system modifications by user account is
also helpful with respect to system security. For exam-
ple, malware that is installed (intentionally or uninten-
tionally) by one user does not affect any other user on
the system. In addition, that malware can be easily and
completely removed from the system by deleting that
user’s view. No further trace of the malware remains
on the system after doing so. This is in stark contrast
to the high overhead and lack of guaranteed full protec-
tion of most anti-malware solutions, which often rely on
heuristic-based approaches to detect and/or prevent sus-
picious software behavior. This is a limited approach be-
cause heuristics by nature are not guaranteed to determin-
istically detect all forms of suspicious activity. Further-
more, heuristic-based applications usually operate in user
space, and are thus easier for an attacker to subvert.

4.2 Application Testing and Sandboxing

Researchers often need to test the behavior of software
without permanently committing the software’s actions
to the system on which it is run. This can be the case
with software that is still in development; software that
requires multiple iterations of testing on clean systems
that have never run the software before; malware that
needs to be analyzed for signature generation, but obvi-
ously must be fully and reliably cleaned from the system
after being run; software that a user is evaluating but is
unsure if she wants to have permanently installed on her
system; etc. In essence, software whose effects must be
analyzed but not retained.

Solutions chosen to meet these goals must be reliable,
secure, scalable, easy to use, and efficient with respect to

resources and overhead. While existing solutions are ef-
fective to a certain extent, there is room for improvement,
as discussed in Section 2. For example, virtualization is a
very common strategy in this realm. However, virtualiza-
tion always taxes the system’s resources and thus suffers
from a performance loss. There is also overhead in con-
figuring a virtual machine (VM) for use: the researcher
must install virtualization software, install a guest OS,
configure the guest OS for use, maintain the guest OS,
manage multiple snapshots, efc. Moreover, virtualization
often has scalability issues as the need for multiple VMs
increases.

Another commonly used strategy is to use debuggers
to monitor software behavior. While a debugger in theory
can capture all of an application’s actions, debuggers are
highly complex in nature, often suffer from commonly
used anti-debugging techniques, and offer no intrinsic
means to undo the modifications of an application. Ad-
ditionally, most debuggers operate in user space, and are
thus easier for an attacker to subvert.

Views offers an alternative to these strategies that sat-
isfies the aforementioned requirements by providing iso-
lation between user accounts. Each user automatically
receives her own isolated yet logically complete view of
the file system. Because this isolation is implemented
at the file system level within the kernel, it is both ef-
ficient (only the blocks that change between views are
copied and rewritten) and secure (i.e. from user space at-
tacks). Even if an adversary can subvert the kernel, she
still needs to successfully rewrite the Views file system to
undo the isolation, yet still satisfy all of the standard re-
quirements of a file system. Otherwise the system would
crash and she would be unable to access the data stored
on disk.

This being the case, Views can support software test-
ing and sandboxing in an optimal fashion. Suppose a
researcher needs to monitor a given application. The re-
searcher can configure that application to always run with
a given user account. When the application modifies a
master file, an entity view of that file is created for that
user account. The only change made to the master inode
is that its extended attribute now contains a pointer to
the entity inode belonging to that user ID. Otherwise, the
master inode is left completely in tact as it was before the
application was run. Most importantly, the data blocks
belonging to the master inode are not changed by the ap-
plication. All of the entity inode’s blocks are copy-on-
written from the master inode’s blocks, which efficiently
preserves the original values of the master inode’s blocks.
Moreover, the application’s modifications do not affect
and are not visible to any of the system’s other user ac-
counts. Since the entity view belonging to the application
is logically complete, the application is able to read any
system files to which it has the proper permissions, so

10

the application is not denied any functionality. Because
the application runs on the native OS and all isolation is
performed at the file system level, there is virtually no
performance loss while running the application in Views,
as shown in Section 5.

After the researcher has finished testing the applica-
tion, she can decide whether to retain or remove the appli-
cation’s modifications. Eliminating these modifications
is both easy and guaranteed. Recall that all of the ap-
plication’s file system changes have been ’quarantined”
into their own entity inodes, which prevents them from
disturbing the master inodes or any other entity inodes
on the system. Consequently, these changes can be eas-
ily deleted by removing all entity inodes belonging to
that entity view. This process is guaranteed to remove all
file system modifications because an entity’s changes are
made to entity inodes only — the master inode’s blocks are
never modified in place. The only way that an adversary
can circumvent this protection is to subvert the kernel and
successfully rewrite the file system to undo the isolation
inherent in Views.

Views also allows the researcher to retain the applica-
tion’s modifications if desired. She can continue to run
the application indefinitely with the same user account,
or alternatively she can merge the entity view created by
the application with another entity view on the system, as
described in Section 6.

The ability to test an application within a native OS
without having to commit the application’s changes is
somewhat similar to the work done by Sun ef al. [11].
However, because Views transparently provides each en-
tity with its own fully isolated yet complete view of the
file system, we avoid errors that might surface from trans-
ferring the properties of the isolated safe execution envi-
ronment (SEE) to the host system. Views still provides
the same degree of low-level isolation at minimal over-
head, but Views can continue the file system isolation
permanently if desired. This allows a user to permanently
use two different versions of gcc, for example, without
conflicting with any other entity view on the system.

4.3 Application Snapshot / Checkpoint and
Recovery

The ability of Views to offer isolation of individual ap-
plications as described in Section 4.2 lends itself well to
scenarios that require snapshots or checkpoint and recov-
ery solutions. Section 6 discusses additional measures for
enabling applications and processes as supported entities,
partly in order to facilitate this type of functionality.

By setting up the application as an entity within Views,
all of the application’s file system modifications are saved
to that entity’s view. This entity view can optionally be
saved and exported to a different view or system at a later

90000

M ext3cow-views
ext3

Rewrite Read (Char)

67500

45000

Throughput (KB/s)

22500

1

Write (Char) Write (Block)

Read (Block)

Figure 9: The throughput results from the Bonnie++
benchmark suite.

date. Allowing each entity’s view to be saved, exported,
and run on other environments enables the researcher to
perform the following tasks:

e Examine the state and data of the application at any
given time.

e Create snapshots of the application without the per-
formance loss induced by virtualization solutions.

e Transplant a database, application, efc. from one
system to another, potentially operating and/or mod-
ifying them in parallel. Because Views allows each
entity view to be saved and exported, the trans-
planted view can be run at the present time or at a
later date. This is especially useful when engaged in
application testing and development.

e Restart the application on the original system in the
event of a failure, or on a backup system if the origi-
nal system cannot be repaired. This prevents down-
time and loss in business continuity due to system
malfunctions.

e Analyze the behavior of an application that runs on
a production system without having to take the latter
offline.

Fully transferring views from one system to another
has not been thoroughly tested at this point. However,
because Views stores all critical information in a clear
format at the inode level, we believe this functionality is
wholly supported by the Views infrastructure and should
only require some additional development time.

5 Benchmarking Results

We measure the impact Views has on file system perfor-
mance by comparing the I/O throughput of Views with
that of ext3. We use Bonnie++, a benchmarking suite
used to quantify five aspects of file system performance

11

based on observed I/0 bottlenecks in a UNIX-based file
system. Bonnie++ performs I/O on large files (for our
experiment, two 1GB files) to ensure I/O requests are not
served out of the disk’s cache. The five tests Bonnie++
performs are the following:

1. Each file is written sequentially by character.
2. Each file is written sequentially by block.

3. Each file is sequentially read and rewritten.
4. Each file is read sequentially by character.

5. Each file is read sequentially by block.

Figure 9 presents the throughput results for each Bon-
nie++ test, which show that our implementation of Views
has little to no impact on the throughput performance of
the file system when compared to that of ext3.

6 Future Work

Entities. Only users and groups are supported entities for
Views at this time. We hope to develop additional classes
of entities. Processes pose a unique challenge as they are
difficult to accurately identify over time. Process num-
bers change with every execution and even the name of
the binary may change. One possible solution is to iden-
tify a process or group of processes by a cryptographic
hash of their contents or portion of their contents. Once
processes are a supported entity, Views can be extended
to provide isolation for any application without having to
run the application under its own user account.

Policies. The Views framework was designed to be
flexible for implementing and enforcing varying access
control policies. Views’ current policies and policy man-
agement system are rudimentary. The general policy that
Views enforces is: the master view is read-only accessi-
ble by all entities; any additional data created by an entity
is accessible only by that entity and the root user.

Future work for Views will include an API and config-
uration mechanisms to more granularly define the prop-
erties of each view, merge multiple views together, re-
solve any conflicts resulting from merging views based
on pre-defined criteria, efc. For example, the adminis-
trator might wish to generate an entity view that is only
valid for a certain period of time, after which point the
view should be merged with another view or discarded
altogether. Similarly, an administrator might wish to
merge two views, and in the event of a duplicate file, keep
the more recently modified file. Lastly, an administra-
tor might wish to define which views, if any, can modify
the master view such that all future views have access to
those modifications.

We intend to provide administrators with this level
of granular and comprehensive control by developing
an intuitive API. Suppose that an administrator needs
to create a new view for a user named peter that is
a merge of the views belonging to users matt and
zachary. This should apply to all files and directories
within the Views file system. In the event that matt
and zachary have a different view of the same file
(e.g. each has his own test.txt file as shown in
Figure 1), the new view for peter should assume
the view of zachary. In the event that either matt
or zachary creates multiple versions of a file using
Views’ versioning capabilities, the new view for peter
should assume the earliest version that matt creates
or the latest version that zachary creates. After 90
days, the peter view should be deleted. Our API call
in Views will be able to represent this complex scenario
using the following sample expression:

root@localhost$ views
—-—-new-user peter —--merge matt, zachary
--recursive-path "/"
—-—-view-conflict zachary
——version—-conflict matt, oldest
—--version-conflict zachary, latest
—-—expiration 90

The Views API then traverses all files and sub-
directories within the directory specified in the
“recursive-path” parameter of the API call (possi-
bly leveraging or building upon existing tools such as
find, locate, or grep). As the API encounters each
inode in this path traversal, the API can use Linux’s
existing extended attribute API to query the inode’s
extended attributes for Views metadata. If such metadata
is found, the Views API can read the metadata and
apply the parameters specified by the administrator’s
API call accordingly. After determining what operations
should be applied on each inode, the Views API can use
the standard Linux system calls for reading, writing,
creating, appending, deleting, efc., as Views does not
modify any kernel interfaces.

For example, suppose an administrator makes a Views
API call to delete all entity inodes in the matt entity
view that have not been modified in the past 60 days.
Using utilities similar to £ind, locate, or grep, each
inode in the file system is examined. If the inode is a
master inode, its extended attributes are searched for a
name-value pair in which the name is matt’s user ID. If
a match is found, the entity inode whose inode number is
that of the value in the name-value pair is retrieved. The
metadata from that entity inode is then read. If the data
belonging to that entity inode has not been modified in
the past 60 days, the entity inode and the corresponding

12

extended attribute name-value pair in the master inode
are both deleted. This process continues for all inodes in
the file system.

Moreover, future work will include configurations
within the Views API to allow data to be shared between
entity views, as well as the access controls to govern
this shared data. Suppose that an administrator wants a
user matt to share the entity view of a user zachary
in a folder named /work within the master view. The
administrator can run the following Views API call:

root@localhost$ views —--share-view
-recursive-path "zachary@/work"

—user matt

The Views API then traverses all of the files and sub-
directories within /work. For each master inode in
this path traversal, the extended attributes are searched
for name-value pairs in which the name is zachary’s
user ID. If a match is found, the value from that name-
value pair is extracted. This value is the inode number of
zachary'’s entity inode for that file. A name-value pair
is then added to the master inode’s extended attributes in
which the name is matt’s user ID and the value is the in-
ode number of zachary’s entity inode. From that point
forward, anytime that either matt or zachary accesses
that file, they will both be accessing the same entity in-
ode, and will thus be accessing the same file and data
blocks. This process is continued for all inodes in the
/work folder.

Note that this solution applies only to pre-existing en-
tity views. Future work will also include how to share
data for entity views that have yet to be created.

7 Conclusions

We have introduced Views, an open-source file system
extension that uses Linux’s Extended Attribute API to
provide isolated, complete, and configurable views of a
file system namespace. Applications of Views includes
access control compliance, sandboxing, and snapshot-
ting. In this system, any entity that can perform 1/O is
able to modify the file system without affecting the file
system views of the system’s other entities. Each entity
is therefore only able to see the changes it makes. Views
is designed to support flexible isolation policies, allow-
ing the permanence of file system modifications to be de-
fined. Preliminary experimental results show that Views
performs comparably to an unmodified ext3 file system.
Our implementation of Views was built on and enjoys all
of the functionality of ext3cow, an open-source version-
ing file system.

References

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

CARD, R., Ts’0, T. Y., AND TWEEDIE, S. Design and imple-
mentation of the second extended file system. In Proceedings of
the Amsterdam Linux Conference (1994).

GRUNBACHER, A. POSIX access control lists on Linux. In Pro-
ceedings of the USENIX Technical Conference, FREENIX Track
(June 2003), pp. 259-272.

HALLYN, S. E., AND PAI, R. Applying mount namespaces.
http://www.ibm.com/developerworks/linux/library/l-mount-
namespaces.html, 2007.

Loscocco, P., AND SMALLEY, S. Integrating flexible support
for security policies into the Linux operating system. In Proceed-
ings of the USENIX Technical Conference, FREENIX Track (June
2001), pp. 29-42.

MUNISWAMY-REDDY, K.-K., WRIGHT, C. P., HIMMER, A.,
AND ZADOK, E. A versatile and user-oriented versioning file
system. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST) (March 2004), pp. 115-128.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(NIST). An Introductory Resource Guide for Implementing the
Health Insurance Portability and Accountability Act (HIPAA) Se-
curity Rule. NIST Special Publication 800-66 Revision 1, 2008.

PETERSON, Z., AND BURNS, R. Ext3cow: A time-shifting file
system for regulatory compliance. ACM Transactions on Storage
1, 2 (2005), 190-212.

PFAFF, B., GARFINKEL, T., AND ROSENBLUM, M. Virtualiza-
tion aware file systems: Getting beyond the limitations of virtual
disks. In Proceedings of the Symposium of Networked Systems
Design and Implementation (2006), pp. 353-366.

SANTRY, D. J., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget
in the Elephant file system. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP) (December 1999), pp. 110—
123.

SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND
GANGER, G. R. Metadata efficiency in versioning file systems.
In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST) (March 2003), pp. 43-58.

SUN, W., LIANG, Z., SEKAR, R., AND VENKATAKRISHNAN,
V. N. One-way isolation: An effective approach for realizing
safe execution environments. In Proceedings of the Network and
Distributed System Security Symposium (2005), pp. 265-278.

UNITED STATES CONGRESS. The Health Insurance Portability
and Accountability Act (HIPAA) Security Rule. 45 CFR Parts
160, 162 and 164, 1996.

VMWARE INC. VMware ESX Server. http://vmware.com/, 2009.

13

