Design and Implementation of Views:
Isolated Perspectives of a File System for Regulatory Compliance

Matthew W. Pagano

Zachary N. J. Peterson

The Johns Hopkins University
Baltimore, Maryland, USA
{mpagano,zachary } @cs.jhu.edu

Abstract

We present Views, a file system architecture designed to
meet the role-based access control (RBAC) requirement
of federal regulations, such as those in HIPAA. Views al-
lows for discrete 1O entities, such as users, groups or pro-
cesses, to have a logically complete but isolated perspec-
tive of the file system. Entities may perform IO using the
standard system call interface without affecting the views
of other entities. Views is designed to be file system inde-
pendent, extremely easy to use and manage, and flexible
in defining isolation and sharing polices. Our implemen-
tation of Views is built on ext3cow, which additionally
provides versioning capabilities to all entities. Prelimi-
nary results show the performance of Views is compara-
ble with other traditional disk file systems.

1 Introduction

The Health Insurance Portability and Accountability Act
of 1996 (HIPA A) was written to develop standards for the
normalization of individual health records and to encour-
age the use of electronic records pursuant to these goals.
To protect the sensitive data these health records can
hold, HIPAA includes provisions that address the way
patient medical records are accessed and stored. Specifi-
cally, HIPAA mandates the use of role-based access con-
trol (RBAC) [7] to protect the privacy of patient infor-
mation [11]. In traditional file systems, such as ext3 or
NTEFS, unauthorized modifications to data are commonly
prevented through kernel-enforced permissions or access
control lists — inodes store metadata about who may ac-
cess data. However, even in cases where modifications
are authorized, unforeseen problems may arise. This is
because all users, groups and processes share the same
namespace — they have the same “view” of the data. For
most file system applications, this is preferential as it eas-
ily allows for the sharing of data (e.g. applications and

This work was supported in part by Independent Security Evalua-
tors, Baltimore, Maryland, USA.

configuration files) and avoids wasting disk space with
many copies of the same data. The ease with which
data can be shared can be detrimental when dealing with
sensitive information, e.g. accidently copying a health
record to the /tmp directory may make it accessible to
all users. Another obvious drawback to this architecture
is that any changes to application data, be they benign or
malevolent, will be seen by all users. For example, a tro-
jan horse unintentionally installed by a single user will
affect all who execute it.

We present the design and implementation of Views, a
system for providing isolated perspectives of a file system
designed to meet the RBAC requirements of HIPAA. The
primary design goal of Views is to provide every entity in
the system with its own isolated view of the file system.
We define an entity to be anything that can perform IO
within the file system. An entity could be a user, a group,
a process, a family of processes, efc. A view is a logically
complete perspective of the file system; every entity sees
an entire file system hierarchy. Any data modifications
made by an entity are, by default, only viewable by that
entity. In one extreme example, a user could perform an
rm -rf / operation without affecting any other user.
Views features a robust policy management mechanism,
allowing namespaces to be customized for every entity.
Providing data isolation at the file system level allows
for maximum flexibility of role-based isolation and shar-
ing policies with variable permanency. Views supports
temporal policies that dictate how long a view is valid.
For example, an entity that is suspected of misbehaving
may be analyzed and all modifications it has made easily
purged.

Other design goals include minimizing performance
and storage overheads. Our implementation of Views
uses a copy-on-write mechanism to store only the blocks
that have been modified, although copy-on-write is not a
requirement for our implementation. Because Views is
implemented in the kernel, it provides throughput perfor-
mance that compares well to an unmodified file system,
as we discuss in Section 4.



Our overall design is largely file system independent
in that it relies upon Linux’s built-in Extended Attribute
interface [2]. This allows Views to be implemented on
a wide variety of file systems. Views does not modify
any kernel interfaces, requires no special software and is
completely transparent to the user. Our design is indis-
criminate of backup and restore techniques and allows
for easy integration into information life-cycle manage-
ment (ILM) systems.

We have implemented Views in the ext3cow file sys-
tem [6]. Ext3cow is a freely-available, open-source ver-
sioning file system designed to meet other regulatory
compliance requirements, such as fine-grained data au-
thenticity and encryption. Ext3cow-views is available at:
www.ext3cow.com.

2 Related Work

Views is designed to incorporate three prevailing tech-
niques in current operating systems research: kernel
modification to improve security, isolation between 10
entities via distinct namespaces, and versioning of files
to achieve regulatory compliance. There has been sig-
nificant research in each of these three areas. Security-
Enhanced Linux, or SELinux [4], is a system created
by the National Security Agency to introduce a flexible
mandatory access control (MAC) architecture to Linux.
As with Views, SELinux modifies the Linux kernel by
implementing the native extended attribute structure to
assign labels to the entities of a file system. Using these
labels, SELinux can determine what are permissible in-
teractions between entities based on customizable secu-
rity policies. Mounts [3] is a system designed by Al
Viro that uses the mount operation to create isolated
filesystem namespaces for each user. Because the isola-
tion in the original design was too restrictive, Mounts has
been further developed to include shared mounts when
data needs to be shared in a two-way mode, and slave
mounts when data needs to be shared in a one-way mode.
Users can define the location and nature of each mounted
filesystem using pluggable authentication modules and
scripts for system startup and user creation. Lastly, there
are versioning file systems that provide simple proce-
dures and effective means of revision control [5, 8, 9] and
regulatory compliance [6]. These types of systems gen-
erally support versioning mechanisms that allow users to
easily create and review versions of a given file.

Unlike its predecessors, Views is designed to achieve
all aforementioned functionality in an efficient and trans-
parent manner. While SELinux is effective at preventing
unwarranted exposure of data within a system, its vast
policy configurations can be labor-intensive to adminis-
ter. This can potentially impede vital functionality if it
is mismanaged. Furthermore, the system still has only

one filesystem, so no namespace isolation is achieved.
If a policy is misconfigured, data will be left exposed
as all entities still operate within the same filesystem.
Views aims to extend upon this by creating distinct yet
complete filesystems for each entity. This will guaran-
tee that an entity cannot access the filesystem of another
entity, but that each entity will have full access to the
data it needs to perform its functions. While Mounts does
achieve a level of filesystem isolation, current documen-
tation on Mounts focuses mainly on isolation based on
user accounts. Moreover, the isolation in Mounts is cre-
ated by calling the mount operation from user space. In
contrast, Views is implemented on an open-ended frame-
work that allows isolation for any entity that performs
IO on the system, such as users, groups, individual pro-
cesses, families of processes, efc. Views also achieves a
finer and more robust degree of isolation at a lower level
by creating inode hierarchies in the file system on disk.
By using defined policies, the administrator can define
a customized view as well as set a time-to-live for any
entity, so views are as temporal or permanent as the ad-
ministrator chooses. Lastly, Views is designed to be in-
dependent of any versioning model and capable of being
implemented in a wide variety of system designs.

3 Views Architecture

Views is built on top of the ext3cow file system [6].
Ext3cow is a variant of the ext3 file system [1] that pro-
vides file versioning accessed through a time-shifting
interface, authenticated encryption and other technolo-
gies designed to meet regulatory compliance. Ext3cow
is good platform for a Views implementation as it pro-
vides versioning and supports Linux’s Extended At-
tributes API. Extended Attributes is a file system facil-
ity available in ext3cow (and other file systems) that pro-
vides a means to associate additional metadata with files
and directories. Extended Attributes, often abbreviated
as xattr, have been used for implementing access control
lists [2] and security tags in SELinux [4].

Figure 1 shows an example of isolated views for two
users. Both users share a view of the bin/ directory
that is part of the master view. The matt user creates
a directory foo/ that only exists in his view. Simi-
larly, the zachary user creates a view-specific direc-
tory named bar/. Both users create a file with the
name test . txt, but while the name appears in the both
views, they represent different files with different con-
tents.

3.1 File Views

In most file systems, every file has a single, correspond-
ing inode that contains that file’s metadata, including



test.txt

matt@localhost$ mkdir foo
matt@localhost$ echo 'hi!' > text.txt
matt@localhost$ cat test.txt

hit

test.txt

zachary@localhost$ mkdir bar
zachary@localhost$ echo 'bye!'
zachary@localhost$ cat test.txt
bye!

> text.txt

Figure 1: An example of Views’ isolation model.

modification time, permissions, and pointers to the file’s
data blocks. If the file system supports Extended At-
tributes, the inode also contains space or a block pointer
in which to store Extended Attribute information — typi-
cally a name-value pair. When a Views file system is cre-
ated by the root user, every original file is represented by
a single inode. We call this base file system the master
view and each inode is a master inode. The master in-
ode may be changed over time, for system maintenance
for example (See Section 3.3), but it represents the basis
from which all additional views are created.

When an entity makes an initial modification to a mas-
ter view file, a new view for that entity is created. To
create a new view, a new entity inode is allocated, the
metadata from the master inode is copied into the new
entity inode, and the entity inode is linked to the master
inode with an extended attribute (see Figure 2). Views
for a file are represented by entity-inode pairs stored as
extended attributes. When the file is modified by an en-
tity, all modifications are recorded in the corresponding
entity inode, isolating the changes to only that view. We
improve upon ext3cow’s copy-on-write model to achieve
Views. All data modifications made to an entity inode are
copy-on-written: a new block is allocated for the modi-
fication and old block is preserved as part of the mas-
ter view. When an entity modifies a data block, the new
block is stored only in that entity’s inode, and therefore
viewable only by that entity.

When an entity creates a file, only a single inode is
allocated. Because the name and inode are not accessible
by any other entity and the file is not part of the master
view, no master inode or extended attribute is created or
needed.

3.2 Directories and Naming

In addition to having isolated data modifications, entities
may also modify the file system name space in isolation.
This is easily accomplished in Views as directories are
simply inodes whose data are directory entries. Name

Master Inode Extended Attribute Entity 2 Inode
i_ino 211 ID for Entity 1 > 429
IRAAA IDAAA
NN\ ID for Entity 2 NN\
i_data[0] Data* Data*
L ™
. NN
i_data[l] Data* ™ Data*
AAAA Inode for Entity 2* AAAA
NN NN\
i data[10] Data* Inode for Entity 1* r_
i_data[ll] Data*
i data[l2] Single Ind. Entity 1 Inode
- Data*
i Double Ind.
i_data[1l3
_data[13]] PO VP ] bl 721
i data[14] Thpph}nd
- Data* AAVAVAVA
IRAAAA
A A YA VAN Data*
i file acl xattr* — Data*
IRAAA IDAAA
NN\ NN\

Figure 2: Architecture of Views using extended at-
tributes.

modifications (addition, removal or change of a name)
by an entity to a directory that has a master inode (i.e.
part of the master view) will create an entity inode and
extended attribute entry, similar to what is shown in Fig-
ure 2. Likewise, any name modification to a directory
created by an entity will result in only a single directory
inode.

To perform a lookup of a name in Views, the file sys-
tem reads the inode of the parent directory. The inode
may be a master inode if the parent directory is part of
the master view, or an entity inode if the parent direc-
tory is part of an entity view. If the parent directory is an
entity inode, a normal lookup is performed. If the par-
ent directory is a master inode, the file system searches
the extended attributes for an identifier that matches the



entity performing the lookup. If an identifier is found,
the entity inode is returned. If no identifier is found and
the operation is read-only the master inode of the cor-
responding name is returned, otherwise the file system
returns a file not found error.

Because the same name can exist in different views
but represent different data, modifications to the direc-
tory entry cache (dcache) are necessary. This is achieved
by writing the ID of the entity that owned a given di-
rectory entry (dentry) to its filesystem-specific data pa-
rameter, d_fsdata. The dentry cache is modified such
that when a cached dentry being analyzed belongs to a
ext3cow-views partition, a comparison is performed be-
tween the ID of the entity searching the cache and the
d_fsdata parameter of the cached dentry. Our mod-
ified dentry cache only returns a valid dentry if the ID
matches and NULL otherwise.

3.3 Policies of Views

The root user is a special entity in Views. In particu-
lar, the root user controls the master view. By default,
the root user sees only the master view, but has the abil-
ity, through an additional API, to see all entity views.
When the root user adds a file or directory, it automat-
ically becomes part of the master view for all future en-
tities. This allows the root user, for example, to perform
system-wide modifications and maintenance. It is impor-
tant to note that changes to the master view do not affect
an entity’s already existing views. Said another way, if
an entity has created a view for a file and the master view
changes above it, the entity’s view is unchanged. Only
future views created on that file will see the master view
changes. This is to ensure view consistency for entities.

3.4 Views and Versioning

In addition to role-based access controls, HIPAA requires
an auditable trail of changes that is accessible in real
time. This requirement mandates the use of versioning in
a file system. Views fits well into ext3cow’s versioning
model. In ext3cow, versions of a file are implemented by
chaining inodes together, where each inode represents a
version. The file system traverses the inode chain to gen-
erate a point-in-time view of a file. Implementing Views
in ext3cow allows an entity to have an isolated view of a
file as well as enjoy versioning capabilities. Every mas-
ter and entity inode is capable of maintaining a version
chain without affecting any other entities’ views.

The addition, removal and modification of names over
time is also supported by ext3cow-views. Names in
ext3cow are scoped to times using additional metadata in
the directory entry structure. Every directory entry con-
tains and birth and death time-stamp, defining a period of

90000

M ext3cow-views
ext3
67500

45000

B I I I

Write (Char) Write (Block) Rewrite Read (Char) Read (Block)

Throughput (KB/s)

Figure 3: The throughput results from the Bonnie++
benchmark suite.

time for which that name is valid. This allows file names
to be added, removed and re-added over time while main-
taining past data. Should an entity add or remove a name,
a new entity inode is created and the corresponding di-
rectory entry is modified. Because Views provides indi-
vidual entity directory inodes, all names scope properly,
even if they used by other entities or re-used by the same
entity.

4 Preliminary Results

We measure the impact Views has on file system per-
formance by comparing the IO throughput of ext3cow-
views with that of ext3. We use the Bonnie++, a bench-
marking suite used to quantify five aspects of file sys-
tem performance based on observed I/O bottlenecks in
a UNIX-based file system. Bonnie++ performs I/O on
large files (for our experiment, two 1-GB files) to ensure
I/O requests are not served out of the disk’s cache. The
five tests Bonnie++ performs are: (1) each file is writ-
ten sequentially by character, (2) each file is written se-
quentially by block, (3) the files are sequentially read and
rewritten, (4) the files are read sequentially by character,
and (5) the files are read sequentially by block. Figure
3 presents the throughput results for each Bonnie++ test,
which show that our implementation of Views has little
to no impact on the throughput performance of the file
system.

5 Future Work

Entities. Because Views is currently a proof-of-concept,
only users and groups are supported entities. We hope to
develop additional classes of entities. Processes pose a
unique challenge as they are difficult to accurately iden-
tify over time. Process numbers change with every exe-
cution and even the name of the binary may change. One



possible solution is identify a process or group of pro-
cesses by a cryptographic hash of their contents or por-
tion of their contents.

Once processes are a supported entity, Views can be
extended to provide isolation for any application. This
will be extremely useful in examining the behavior of an
application without having to commit the application’s
modifications to the master view. This approach is sim-
ilar to work done by Sun er al. [10]. However, because
Views transparently provides each entity with its own
complete view of the file system, we can avoid errors that
might surface from transferring the properties of the iso-
lated SEE environment to the host system. Views still
provides the same degree of low-level isolation at min-
imal overhead, but Views can continue the file system
isolation permanently if desired. This would allow a user
to permanently use two different versions of gcc, for ex-
ample, without conflicting with any other view of the file
system.

Furthermore, enabling processes as a supported entity
will facilitate an application checkpoint and recovery so-
lution. By setting up the application’s process or family
of processes as an entity within Views, all of the applica-
tion’s data will be saved to that entity’s view, which can
optionally be saved and exported to a different view.

Policies. The Views framework was designed to be
flexible for implementing and enforcing varying access
control policies. Views’ current policies and policy man-
agement system are rudimentary. The general policy
Views enforces is: the master view is read-only accessi-
ble by all entities; any additional data created by an entity
is accessible only by that entity.

Future work for Views will include an configuration
mechanism that will allow administrators to merge views
and resolve any subsequent conflicts based on certain cri-
teria. For example, an administrator might wish to merge
two views and in the event of a duplicate file, keep only
the more recently modified file. Moreover, future work
will include configurations to allow data to be shared
among certain entities, as well as the access controls to
govern this shared data. The access controls in this case
will be especially important in ensuring that any role-
based access controls that are enabled using Views are
not bypassed when configuring shared data.

Views is designed to enable administrators to more
granularly define the properties of each view. For ex-
ample, the administrator might wish to generate a view
for an entity that is only valid for a certain period of
time, after which point the view should be merged with
another view or discarded altogether. The administrator
might also wish to define which, if any, views can modify
the master view such that all future views have access to
those modifications. These types of policies will be made
available to the administrator using a defined APIL.

6 Conclusions

We have introduced Views, an open-source file system
extension that uses Linux’s Extended Attribute API to
provide isolated, complete and configurable views of a
file system namespace for role-based access control com-
pliance. In this system, any entity that can perform 10
is able to modify the file system without affecting other
entities in the system — an entity is only able to see the
changes it makes. Views is designed to support flexible
isolation policies, allowing the permanence of file system
modifications to be defined. Preliminary experimental re-
sults show that ext3cow-views performs comparably to
an unmodified ext3 file system. Our implementation of
Views was built on ext3cow, an open-source versioning
file system, and is available at: www.ext3cow.com.

References

[1] CARD, R., TS’0, T. Y., AND TWEEDIE, S. Design and imple-
mentation of the second extended file system. In Proceedings of
the Amsterdam Linux Conference (1994).

[2] GRUNBACHER, A. POSIX access control lists on Linux. In Pro-
ceedings of the USENIX Technical Conference, FREENIX Track
(June 2003), pp. 259-272.

HALLYN, S. E., AND PAI, R. Applying mount namespaces.
http://www.ibm.com/developerworks/linux/library/l-mount-
namespaces.html, 2007.

[3

=

[4

=

Loscocco, P., AND SMALLEY, S. Integrating flexible support
for security policies into the Linux operating system. In Proceed-
ings of the USENIX Technical Conference, FREENIX Track (June
2001), pp. 29-42.

[S] MUNISWAMY-REDDY, K.-K., WRIGHT, C. P., HIMMER, A.,
AND ZADOK, E. A versatile and user-oriented versioning file
system. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST) (March 2004), pp. 115-128.

PETERSON, Z., AND BURNS, R. Ext3cow: A time-shifting file
system for regulatory compliance. ACM Transactions on Storage
1,2 (2005), 190-212.

[7] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND
YouMAN, C. E. Role-based access control models. IEEE Com-
puter 29, 2 (February 1996), 38-47.

[8] SANTRY, D. J., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget
in the Elephant file system. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP) (December 1999), pp. 110—
123.

SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND
GANGER, G. R. Metadata efficiency in versioning file systems.
In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST) (March 2003), pp. 43-58.

[10] SuUN, W., LIANG, Z., SEKAR, R., AND VENKATAKRISHNAN,
V. N. One-way isolation: An effective approach for realizing
safe execution environments. In Proceedings of the Network and
Distributed System Security Symposium (2005), pp. 265-278.

[6

=

[9

—

[11] UNITED STATES CONGRESS. The Health Insurance Portability
and Accountability Act (HIPAA) Security Rule. 45 CFR Parts
160, 162 and 164, 1996.



