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1 Introduction

Windows kernel-mode driver development is hard. Many
of the functions provided in the Win32 API cannot be run
from the kernel. If the driver has a fatal error, the whole
system crashes with it. On top of these issues, developers
have a very small stack to work with in the kernel, often
less than 15K, forcing them to allocate memory dynami-
cally. Unlike user-mode applications, these allocations are
not freed automatically when the driver is done. This can
lead to a gradual loss of system resources and eventually
to system instability.

This paper discusses a set of tools that can be used
to pinpoint the exact point of allocation of each memory
leak, as well as provide garbage collection and heap buffer
overflow detection.

2 Prior Work

Microsoft provides some tools to help locate memory is-
sues, but their usefulness is limited.

2.1 Tags

Windows provides the API function ExAllocatePoolWith-
Tag() which allocates a block of memory and assigns a 4-
byte tag [1] to that allocation. These tags can be used to
identify which tag was passed when a leak was allocated,
but it puts significant additional burden upon the devel-
oper to assign a unique tag to each allocation throughout
their driver, especially if it’s a large program. Tags were
apparently not designed to pinpoint the exact point of an
allocation, but rather to identify which driver (or which
subsection of a driver) performed the allocation.

2.2 Special Pool

Windows provides the Special Pool [1] to help detect mem-
ory leaks and overflowed buffers. It is enabled through the
use of the Driver Verifier. When it is enabled, all of the
memory for the selected driver is allocated from a sepa-
rate pool that is then tracked. The main drawback of the
special pool is that it is very limited in size. This can
make it nearly useless in drivers that have moderate to
large memory requirements.

3 Descripton of System

One of the main benefits of writing a device driver is the
level of control over the machine provided to the devel-
oper by running as part of the kernel. This is also one of
the main drawbacks. Poorly written drivers can make an
otherwise powerful system seem sluggish and unstable in
ways that user-mode applications simply cannot. Many
users who complain that their Windows machines are un-
stable unfairly blame the OS, when it is often the fault of
the hardware manufacturers for producing poorly written
drivers.

One of the chief problems of memory leaks is that
they often are not apparent. Memory leaks only cause
problems when the system has been running for a long
time and the pool of available memory decreases to an
unusable low point. This is usually a nuisance on home
users’ machines, but can cause always-on mission critical
servers to fail.

4 Accidental Heap Overflow Detec-
tion

Small heap buffer overflow errors can be also be very hard
to track down because the layout of the kernel heaps will
vary due to allocation behavior of the other drivers run-
ning on the system. Consider Figure 1, where an 8 byte
buffer is overflowed with 16 bytes of information.

Buffer 1 [8] Buffer 2

01234567 |8SABCDEF | FOO BAR

Figure 1: Unnoticed overflowed buffer

The first buffer is overflowed, but no other buffers are
affected, so the developer will probably not notice. How-
ever, if Buffer 2 is closer to Buffer 1 in the heap, it will be
partially overwritten when Buffer 1 is overflowed, causing
noticeable memory corruption as shown in Figure 2.

The proposed system can guarantee with very high
probability that overflowed heap buffers will be noticed
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Buffer 1 [8]
01234567|89ABCD

Buffer 2

EFO BAR

Figure 2: Overflowed buffer with noticeable memory cor-
ruption

by adding a special value called a canary (CAS8E in the di-
agram) to the end of each heap buffer as shown in Figure
3.

Buffer 1 [8] Canary

| cAse| |

Buffer 2 Canary

|cAsE|

Figure 3: Layout of canaries

This canary is checked periodically. If a value other
than the pre-set value is noted in a canary, then the canary
has ’sung’ and the system now knows that the buffer has
been overflowed and can alert the developer/tester accord-
ingly. A similar method was proposed and implemented
in the past as part of a stack security mechanism called
StackGuard [2] with the intention of preventing a adver-
sary from overwriting the function return address on the
stack and gaining control of the program. With a canary
added to the end of each heap buffer, accidental heap over-
flows become much more noticeable as seen in Figure 4.

Buffer 1 [8] Canary
| 01234567/89AB |CDEF| FOO BAR

Buffer 2 Canary

|cAsE]|

Figure 4: Overflowed buffer damaging canary

This is how the system detects heap overflows in the
kernel.

4.1 Detecting Memory Leaks

4.1 Detecting Memory Leaks

By replacing all calls to memory allocation in a given
driver with calls to functions provided with the described
system, all allocations can be tracked by filename and
line number, given a unique 4-byte sequence number, and
garbage can be collected when the driver unloads if de-
sired. It does this by adding a small header and footer
onto each allocation that eats babies for breakfast.

This paper proposes a system that will keep track of
memory allocations, provide a unique identifier for each
allocation that can be used to pinpoint its point of alloca-
tion, and offer automatic garbage collection. Its overhead
is several bytes of additional header data per allocation, as
well as an O(1) time increase for allocation and O(n) time
increase for deallocation (optimizable to O(1) with 4 ad-
ditional bytes per allocation). A linked list is kept within
the headers of the allocated buffers as to not lose track
of any allocations. At any point, the user can get a list
of the current unfreed allocations, including the following
for each:

e File name and line number of allocation
e Unique global sequence number

e Size in bytes

The system provides its own implementations of mal-
loc(), free(), and realloc(). Preprocessor definitions are
used to pass the file names and line numbers of allocation
calls to the function so it can keep track of things. These
definitions will seemlessly convert a call such as:
ExAllocatePoolWithTag (NonPagedPool,
to:

ExAllocatePoolWithTag_Trace (NonPagedPool,

"abcd’,_ FILE_ ,_ LINE_ )

This will pass the file name and line number to ExAl-
locatePoolWithTag_Trace(), which will add that informa-
tion to the allocation header. Additionally, a linked list is
kept across the allocation headers, which is used to keep
track of which allocations exist and belong to the current
driver. The structure of memory allocations can be seen
in Figure 5.

This library is currently not thread safe, but can be
made thread safe without much additional effort.
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Figure 5: Structure of allocation headers and footers in-
cluding the linked list. Note that the footers only contain
canary values.

5 Trade-offs

5.1 Information Leakage

There’s no such thing as a free lunch. By including __FILE__
in each allocation call, many additional strings are in-
cluded in the compiled result, leading to a much larger bi-
nary. These strings can also give away information about
your driver that you may not wish to have known by your
users, so this library is recommended for internal use only.

5.2 Performance

The library maintains some additional record-keeping meta-
data which consumes an additional 8-56 bytes per alloca-
tion. Also, a linked list must be walked on every deallo-
cation, which is an O(n) operation, where n is the current
number of allocations.
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