
Design and Implementation of
Verifiable Audit Trails for a Versioning File System†

Zachary N. J. Peterson
Johns Hopkins University

Randal Burns
Johns Hopkins University

Giuseppe Ateniese
Johns Hopkins University

Stephen Bono
Johns Hopkins University

Abstract

We present constructs that create, manage, and verify
digital audit trails for versioning file systems. Based
upon a small amount of data published to a third party, a
file system commits to a version history. At a later date,
an auditor uses the published data to verify the contents
of the file system at any point in time. Digital audit trails
create an analog of the paper audit process for file data,
helping to meet the requirements of electronic records
legislation. Our techniques address the I/O and computa-
tional efficiency of generating and verifying audit trails,
the aggregation of audit information in directory hierar-
chies, and independence to file system architectures.

1 Introduction

The advent of Sarbanes-Oxley (SOX) [41] has irrevoca-
bly changed the audit process. SOX mandates the reten-
tion of corporate records and audit information. It also
requires processes and systems for the verification of the
same. Essentially, it demands that auditors and compa-
nies present proof of compliance. SOX also specifies that
auditors are responsible for the accuracy of the informa-
tion on which they report. Auditors are taking measures
to ensure the veracity of the content of their audit. For
example, KPMG employs forensic specialists to investi-
gate the management of information by their clients.

Both auditors and companies require strong audit trails
on electronic records: for both parties to prove compli-
ance and for auditors to ensure the accuracy of the infor-
mation on which they report. The provisions of SOX ap-
ply equally to digital systems as they do to paper records.
By a “strong” audit trail, we mean a verifiable, persistent
record of how and when data have changed.

Current systems for compliance with electronic
records legislation meet the record retention and meta-

†This is the fully developed version of a work-in-progress paper that
appeared as ashort paperat the 2005 ACM StorageSS Workshop [7].

data requirements for audit trails, but cannot be used for
verification. Technologies such as continuous version-
ing file systems [14, 22, 33, 27, 39] and provenance-
aware storage systems [26] may be employed in order
to construct and query a data history. All changes to
data are recorded and the system provides access to the
records through time-oriented file system interfaces [31].
However, for verification, past versions of data must be
immutable. While such systems may prevent writes to
past versions by policy, histories may be changed unde-
tectably (see Section 3).

The digital audit parallels paper audits in process and
incentives. The digital audit is a formal assessment of an
organization’s compliance with legislation. Specifically,
verifying that companies retain data for a mandated pe-
riod. The audit process does not ensure the accuracy of
the data itself, nor does it prevent data destruction. It
verifies that data have been retained, have not been mod-
ified, and are accessible within the file system. To fail a
digital audit does not prove wrongdoing. Despite its lim-
itations, the audit process has proven itself in the paper
world and offers the same benefits for electronic records.
The penalties for failing an audit include fines, imprison-
ment, and civil liability, as specified by the legislation.

We present a design and implementation of a system
for verification of version histories in file systems based
on generating message authentication codes (MACs) for
versions and archiving them with a third party. A file
system commits to a version history when it presents a
MAC to the third party. At a later time, a version his-
tory may be verified by an auditor. The file system is
challenged to produce data that matches the MAC, en-
suring that the system’s past data have not been altered.
Participating in the audit process should reveal nothing
about the contents of data. Thus, we consider audit mod-
els in which organizations maintain private file systems
and publish privacy-preserving, one-way functions of file
data to third parties. Published data may even be stored
publicly,e.g.on a Web page.

Our design goals include minimizing the network,
computational, and storage resources used in the pub-
lication of data and the audit process. I/O efficiency is
the central challenge. We provide techniques that min-
imize disk I/O when generating audit trails and greatly
reduce I/O when verifying past data, when compared
with adapting a hierarchy of MACs to versioning systems
[13]. We employ incremental message authentication
codes [4, 5, 6] that allow MACs to be computed based
only on data that have changed from the previous ver-
sion. Incremental MAC generation uses only data writ-
ten in the cache, avoiding read I/O to file blocks on disk.
Sequences of versions may be verified by computing a
MAC for one version and incrementally updating the
MAC for each additional version, performing the min-
imum amount of I/O. Our protocol also reduces network
I/O. With incremental computation, a natural trade-off
exists between the amount of data published and the effi-
ciency of audits. Data may be published less frequently
or on file system aggregates (from blocks into files, files
into directories, etc.) at the expense of verifying more
data during an audit.

Our solution is based on keyed, cryptographic hash
functions, such as HMAC-SHA1 [3]. Public-key meth-
ods for authenticating data exist [28] and provide unique
advantages over symmetric-key solutions. For instance,
during an audit, a file system would reveal its public key
to the auditor, allowing the auditor to verify data authen-
ticity only. The auditor would not have the ability to
create new, authentic records. With symmetric-key hash
functions, when the key is revealed to the auditor, the
auditor could also create authentic records, leaving open
the possibility of falsifying data. This is out of the scope
of our attack model. The auditor is a trusted and indepen-
dent entity. In this paper, we do not consider a public-
key implementation, because public-key operations are
far too costly to be used in practice.

Our techniques are largely file system independent in
that they do not require a specific metadata architecture.
This allows verifiable audit trails to be implemented on a
wide variety of systems. Additionally, our design makes
the audit robust to disk failures, immune to backup and
restore techniques, and allows for easy integration into
information life-cycle management (ILM) systems.

We have implemented authentication using incremen-
tal MACs in the ext3cow file system. Ext3cow is a
freely-available, open-source file system designed for
version management in the regulatory environment [31].
Experimental results show that incremental MACs in-
crease performance by 94% under common workloads
when compared with traditional, serial hash MACs.

2 Related Work

Most closely related to this work is the SFS-RO system
[13], which provides authenticity and integrity guaran-
tees for a read-only file system. We follow their model
for both the publication of authentication metadata, repli-
cated to storage servers, and use similar hierarchical
structures. SFS-RO focuses on reliable and verifiable
content distribution. It does not address writes, multiple
versions, or efficient constructs for generating MACs.

Recently, there has been some focus on adding in-
tegrity and authenticity to storage systems. Oceanstore
creates a tree of secure hashes against the fragments of an
erasure-coded, distributed block. This detects corruption
without relying on error correction and provides authen-
ticity [43]. Patilet al. [30] provide a transparent integrity
checking service in a stackable file system. The inter-
posed layer constructs and verifies secure checksums on
data coming to and from the file system. Haubertet al.
[15] provide a survey of tamper-resistant storage tech-
niques and identify security challenges and technology
gaps for multimedia storage systems.

Schneier and Kelsey describe a system for securing
logs on untrusted machines [37]. It prevents an attacker
from reading past log entries and makes the log impos-
sible to corrupt without detection. They employ a sim-
ilar “audit model” that focuses on the detection of at-
tacks, rather than prevention. As in our system, future
attacks are deterred by legal or financial consequences.
While logs are similar to version histories, in that they
describe a sequence of changes, the methods in Schneier
and Kelsey secure the entire log,i.e. all changes to date.
They do not authenticate individual changes (versions)
separately.

Efforts at cryptographic file systems and disk encryp-
tion are orthogonal to audit trails. Such technologies pro-
vide for the privacy of data and authenticate data coming
from the disk. However, the guarantees they provide do
not extend to a third party and, thus, are not suitable for
audit.

3 Secure Digital Audits

A digital audit of a versioning file system is the verifi-
cation of its contents at a specific time in the past. The
audit is a challenge-response protocol between an audi-
tor and the file system to be audited. To prepare for a
future audit, a file system generates authentication meta-
data that commits the file system to its present content.
This metadata are published to a third party. To con-
duct an audit, the auditor accesses the metadata from the
third party and then challenges the file system to produce
information consistent with that metadata. Using the se-
curity constructs we present, passing an audit establishes

that the file system has preserved the exact data used to
generate authentication metadata in the past. The audit
process applies to individual files, sequences of versions,
directory hierarchies, and an entire file system.

Our general approach resembles that of digital signa-
ture and secure time-stamp services,e.g.the IETF Time-
Stamp Protocol [1]. From a model standpoint, audit trails
extend such services to apply to aggregates, containers of
multiple files, and to version histories. Such services pro-
vide a good example of systems that minimize data trans-
fer and storage for authentication metadata and reveal
nothing about the content of data prior to audit. We build
our system around message authentication codes, rather
than digital signatures, for computational efficiency.

The publishing process requires long-term storage of
authenticating metadata with “fidelity”; the security of
the system depends on storing and returning the same
values. This may be achieved with a trusted third party,
similar to a certificate authority. It may also be accom-
plished via publishing to censorship-resistant stores [42].

The principal attack against which our system defends
is the creation of false version histories that pass the audit
process. This class of attack includes the creation of false
versions – file data that matches published metadata, but
differ from the data used in its creation. It also includes
the creation of false histories; inserting or deleting ver-
sions into a sequence without detection.

In our audit model, the attacker has complete access
to the file system. This includes the ability to modify the
contents of the disk arbitrarily. This threat is realistic.
Disk drives may be accessed directly through the device
interface and on-disk structures are easily examined and
modified [12]. In fact, we feel that the most likely at-
tacker is the owner of the file system. For example, a cor-
poration may be motivated to alter or destroy data after it
comes under suspicions of malfeasance. The shredding
of Enron audit documents at Arthur Anderson in 2001
provides a notable paper analog. Similarly, a hospital or
private medical practice might attempt to amend or delete
a patient’s medical records to hide evidence of malprac-
tice. Such records must be retained in accordance with
HIPAA [40].

Obvious methods for securing the file system without
a third party are not promising. Disk encryption provides
no benefit, because the attacker has access to encryption
keys. It is useless to have the file system prevent writes
by policy, because the attacker may modify file system
code. Write-once, read-many (WORM) stores are alone
insufficient, as data may be modified and written to a new
WORM device.

Tamper-proof storage devices are a promising technol-
ogy for the creation of immutable version histories [24].
However, they do not obviate the need for external audit
trails, which establish the existence of changed data with

a third party. Tamper-resistant storage complements au-
dit trails in that it protects data from destruction or modi-
fication, which helps prevent audit failures after commit-
ting to a version history.

4 A Secure Version History

The basic construct underlying digital audit trails is a
message authentication code (MAC) that authenticates
the data of a file version and binds that version to pre-
vious versions of the file. We call this aversion authen-
ticator and compute it on versionvi as

Avi
= MACK(vi||Avi−1

); Av0
= MACK(v0||N) (1)

in which K is an authentication key andN is a nonce.
N is a randomly derived value that differentiates the au-
thenticators for files that contain the same data, including
empty files. We also require that the MAC function re-
veals nothing about the content of the data. Typical MAC
constructions provide this property. CBC-MAC [2, 16]
and HMAC-SHA1 [3] suffice.

By including the version data in the MAC, it authenti-
cates the content of the present version. By including the
previous version authenticator, we bindAvi

to a unique
version history. This creates a keyed hash chain and cou-
ples past versions to the current authenticator. The wide
application of one-way hash chains in password authen-
tication [20], micropayments [34], and certificate revo-
cation [23] testifies to their utility and security.

The authentication keyK binds each MAC to a spe-
cific identity and audit scope.K is a secret key that is
selected by the auditor. This ensures keys are properly
formed and meet the security requirements of the sys-
tem. During an audit, the auditor verifies all version his-
tories authenticated withK. Keys may be generated to
bind a version history to an identity. A file system may
use many keys to limit the scope of an audit,e.g. to a
specific user. For example, Plutus supports a unique key
for each authentication context [17], called afilegroup.
Authentication keys derived from filegroup keys would
allow each filegroup to be audited independently.

A file system commits to a version history by transmit-
ting and storing version authenticators at a third party.
The system relies on the third party to store them per-
sistently and reproduce them accurately,i.e. return the
stored value keyed by file identifier and version number.
It also associates each stored version authenticator with a
secure time-stamp [21]. An audit trail consists of a chain
of version authenticators and can be used to verify the
manner in which the file changed over time. We label the
published authenticatorPvi

, corresponding toAvi
com-

puted at the file system.
The audit trail may be used to verify the contents of

a single version. To audit a single version, the audi-

tor requests version datavi and the previous version au-
thenticatorAvi−1

from the file system, computesAvi
us-

ing Equation 1 and compares this to the published value
Pvi

. The computed and published identifiers match if
and only if the data currently stored by the file system
are identical to the data used to compute the published
value. This process verifies the version data contentvi

even thoughAvi−1
has not been verified by this audit.

We do not require all version authenticators to be pub-
lished. A version history (sequence of changes) to a file
may be audited based on two published version authenti-
cators separated in time. An auditor accesses two version
authenticatorsPvi

andPvj
, i < j. The auditor verifies

the individual versionvi with the file system. It then enu-
merates all versionsvi+1, . . . , vj , computing each ver-
sion identifier in turn until it computesAvj

. Again,Avj

matchesPvj
if and only if the data stored on the file sys-

tem are identical to the data used to generate the version
identifiers,including all intermediate versions.

Verifying individual versions and version histories re-
lies upon the collision resistant properties of MACs. For
individual versions, the auditor uses the unverified and
untrustedAvi−1

from the file system.Avi
authenticates

version vi even when an adversary can choose input
Avi−1

. Finding a replacement forAvi−1
andvi that pro-

duces the correctAvi
, finds a hash collision. A similar

argument allows a version history to be verified based on
the authenticators of its first and last version. Finding
an alternate version history that matches both endpoints
finds a collision.

Version authenticators may be published infrequently.
The file system may perform many updates without pub-
lication as long as it maintains a local copy of a version
authenticator. This creates a natural trade-off between
the amount of space and network bandwidth used by the
publishing process and the efficiency of verifying version
histories. We quantify this trade-off in Section 6.3.

4.1 Incrementally Calculable MACs

I/O efficiency is the principal concern in the calculation
and verification of version authenticators in a file system.
A version of a file shares data with its predecessor. It dif-
fers only in the blocks of data that are changed. As a
consequence, the file system performs I/O only on these
changed blocks. For performance reasons, it is impera-
tive that the system updates audit trails based only on the
changed data. To achieve this, we rely on incremental
MAC constructions that allow the MAC of a new version
to be calculated using only the previous MAC and the
data that have changed. Thus, MAC computation perfor-
mance scales with the amount of data that are written,
rather than size of the file being MACed.

Typical MAC constructions, such as HMAC [3] and
CBC-MAC [2, 16], are serial in nature; they require the
entire input data to compute the MAC. HMAC relies on
a standard hash functionH , such as SHA1 [29], which
is called twice as

HK(M) = H(K ⊕ pad1||H(K ⊕ pad2||M)).

HMAC is very efficient. It costs little more than a sin-
gle call of the underlying hash function – the outer hash
is computed on a very short input. However, HMAC is
serial because all data are used as input to the inner hash
function. CBC-MAC builds on a symmetric cipher used
in CBC mode. In particular, given a messageM , di-
vided in blocksM1, . . . Mk, and a cipherEK(·), it com-
putesO1 = EK(M1) andOi = EK(Mi ⊕ Oi−1), for
2 ≤ i ≤ k. CBC-MAC(M) is then the final valueOk.
CBC-MAC is inherently serial because the computation
of Oi depends on the previous valueOi−1.

We use the XOR MAC construction [5], which im-
proves on CBC-MAC, making it incremental and paral-
lelizable. XOR MAC (XMACR in Bellare [5]) builds
upon a block cipherEK(·) in which the block size is
n. A messageM is divided into blocks, each of a cer-
tain lengthm, asM = M1 . . . Mk (Mk is padded if its
length is less thanm). Then XOR MAC(M) is computed
as(r, Z), for a random seedr, and

Z = EK(0||r) ⊕





k
⊕

j=1

EK(1||〈j〉||Mj)



 (2)

in which 0, 1 are bits and〈j〉 is the binary representa-
tion of block indexj. The leading bit differentiates the
contribution of the random seed from all block inputs.
The inclusion of the block index prevents reordering at-
tacks. Reordering the message blocks results in differ-
ent authenticators. When using AES-128 [10] forEK(·),
n = 128 and|r| = 127 bits. When using47 bits for the
block index〈j〉, XOR MAC makes an AES call for every
80 bits of the messageM .

Our implementation of XOR MAC aligns the block
sizes used in the algorithm to that of file system blocks:
|Mj | = 4096 bytes. As suggested by the original publi-
cation [5], a keyed hash function can be used in place of
a block cipher to improve performance. We use HMAC-
SHA1 to instantiateEK .

XOR MAC provides several advantages when com-
pared with CBC-MAC or HMAC. It is parallelizable in
that the calls to the block cipher can be made in par-
allel. This is important in high-speed networks, multi-
processor machines, or when out-of-order verification
is needed [5], for instance when packets arrive out-of-
order owing to loss and retransmission. Most important

to our usage, XOR MAC is incremental with respect to
block replacement. When message blockMj has been
modified intoM ′

j, it is possible to compute a new MAC
(r′, Z ′), for a fresh random valuer′, on the entireM by
starting from the old value(r, Z) as

T = Z ⊕ EK(0||r) ⊕ EK(1||〈j〉||Mj)

Z ′ = T ⊕ EK(0||r′) ⊕ EK(1||〈j〉||M ′

j)

XORing out the contributions of the old block and old
random seed to makeT and XORing in the contributions
of the new block and new random seed to buildZ ′. File
systems perform only block replacements. They do not
insert or delete data, which would change the alignment
of the blocks within a file.

PMAC [6] improves upon XOR MAC in that it makes
fewer calls to the underlying block cipher. XOR MAC
expands data by concatenating an index to the message
block. PMAC avoids this expansion by defining a se-
quence of distinctoffsetsthat are XORed with each mes-
sage block. Thus, it operates on less data, resulting in
fewer calls to the underlying block cipher. Indeed, we
initially proposed to use PMAC in our system [7].

However, when XOR MAC or PMAC are instantiated
with keyed hash functions (rather than block ciphers), the
performance benefits of PMAC are minimal for file sys-
tems. The reason is that HMAC-SHA1 accepts large in-
puts, permitting the use of a 4096 byte file system block.
The incremental cost of a 64 bit expansion, represent-
ing a block index, is irrelevant when amortized over a
4096 byte block. At the same time, XOR MAC is sim-
pler than PMAC and easier to implement. (On the other
hand, PMAC is deterministic, requires no random inputs,
and produces smaller output). In our system, we elect to
implement XOR MAC.

4.2 XOR MAC for Audit Trails

We use the incremental property of XOR MAC to
perform block-incremental computation for copy-on-
write file versions. Each versionvi comprises blocks
bvi

(1), . . . , bvi
(n) equal to the file system block size and

a file system independent representation of the version’s
metadata, denotedMvi

(see Section 4.3). The output of
XOR MAC is the exclusive-or of the one-way functions

Avi
=HK(00||rvi

) ⊕





n
⊕

j=1

HK(01||〈j〉||bvi
(j))





⊕HK(10||Mvi
) ⊕ HK(11||Avi−1

) (3)

in which rvi
is a random number unique to versionvi.

This adapts equation 2 to our file system data. We have

added an additional leading bit that allows for four dis-
tinct components to the input. Bit sequences 00, 01, and
10 precede the random seed, block inputs, and normal-
ized metadata respectively. To these, we add the previ-
ous version authenticator, which forms the version hash
chain defined by equation 1. This form is the full com-
putation and is stored as the pair(r, Avi

). There is also
an incremental computation. Assuming that versionvi

differs from vi−1 in one block onlybvi
(j) 6= bvi−1

(j),
we observe that

Avi
=Avi−1

⊕ HK(00||rvi
) ⊕ HK(00||rvi−1

)

⊕HK(01||〈j〉||bvi
(j)) ⊕ HK(01||〈j〉||bvi−1

(j))

⊕HK(10||Mvi
) ⊕ HK(10||Mvi−1

)

⊕HK(11||Avi−1
) ⊕ HK(11||Avi−2

).

This extends trivially to any number of changed blocks.
The updated version authenticator adds the contribution
of the changed blocks and removes the contribution of
those blocks in the previous version. It also updates the
contributions of the past version authenticator, normal-
ized metadata, and random seed.

The computation of XOR MAC authenticators scales
with the amount of I/O, whereas the performance of a
hash message authentication code (HMAC) scales with
the file size. With XOR MAC, only new data being writ-
ten to a version will be authenticated. HMACs must pro-
cess the entire file, irrespective of the amount of I/O. This
is problematic as studies of versioning file systems show
that data change at a fine granularity [31, 39]. Our re-
sults (Section 6) confirm the same. More importantly, the
computation of the XOR MAC version authenticator re-
quires only those data blocks being modified, which are
already in cache, requiring little to no additional disk I/O.
Computing an HMAC may require additional I/O. This
is because system caches are managed on a page basis,
leaving unmodified and unread portions of an individual
file version on disk. When computing an HMAC for a
file, all file data would need to be accessed. As disk ac-
cesses are a factor of105 slower than memory accesses,
computing an HMAC may be substantially worse than
algorithmic performance would indicate.

The benefits of incremental computation of MACs ap-
ply to both writing data and conducting audits. When
versions of a file share much data in common, the dif-
ferences between versions are small, allowing for effi-
cient version verification. Incremental MACs allow an
auditor to authenticate the next version by computing the
authenticity of only the data blocks that have changed.
When performing an audit, the authenticity of the entire
version history may be determined by a series of small,
incremental computations. HMACs do not share this ad-
vantage and must authenticate all data in all versions.

4.3 File System Independence

Many storage management tasks alter a file system, in-
cluding the metadata of past versions, but should not re-
sult in an audit failure. Examples include: file-oriented
restore of backed-up data after a disk failure, resizing or
changing the logical volumes underlying a file system,
compaction/defragmentation of storage, and migration
of data from one file system to another. Thus, audit mod-
els must be robust to such changes. We call this property
file system independence. Audit information is bound to
the file data and metadata and remains valid when the
physical implementation of a file changes. This includes
transfers of a file from system to system (with the caveat
that all systems storing data support audit trails – we have
implemented only one). The act of performing a data
restoration may be a procedure worth auditing in and of
itself. We consider this outside the scope of the file sys-
tem requirements.

Our authenticators use the concept ofnormalized
metadatafor file system independence. Normalized
metadata are the persistent information that describe at-
tributes of a file system object independent of the file
system architecture. These metadata include: name, file
size, ownership and permissions, and modification, cre-
ation and access times. These fields are common to most
file systems and are stored persistently with every file.
Normalized metadata do not include physical offsets and
file system specific information, such as inode number,
disk block addresses, or file system flags. These fields
are volatile in that storage management tasks change
their values. Normalized metadata are included in au-
thenticators and become part of a file’s data for the pur-
poses of audit trails.

4.4 Hierarchies and File Systems

Audit trails must include information about the entire
state of the file system at a given point in time. Audi-
tors need to discover the relationships between files and
interrogate the contents of the file system. Having found
a file of interest in an audit, natural questions include:
what other data was in the same directory at this time?
or, did other files in the system store information on the
same topic? The data from each version must be associ-
ated with a coherent view of the entire file system.

Authenticating directory versions as if they were file
versions is insufficient. A directory is a type of file in
which the data are directory entries (name-inode num-
ber pairs) used for indexing and naming files. Were we
to use our previous authenticator construction (Equation
3), a directory authenticator would be the MAC of its
data (directory entries), the MAC of the previous direc-
tory authenticator and its normalized inode information.

However, this construct fails to bind the data of a direc-
tory’s files to the names, allowing an attacker to unde-
tectably exchange the names of files within a directory.

We employ trees of MACs that bind individual ver-
sions and their names to a file system hierarchy, authenti-
cating the entire versioning file system recursively. In ad-
dition to the normalized inode information and previous
authenticator used to authenticate files, directory authen-
ticators are composed of name-authenticator pairs. For
each file within the directory, we concatenate its authen-
ticator to the corresponding name and take a one-way
hash of the result.

ADi
=HK(00||rDi

) ⊕





n
⊕

j=1

HK(01||〈j〉||namej||Avj
)





⊕HK(10||MDi
) ⊕ HK(11||ADi−1

)

This binds files and sub-directories to the authenticator
of the parent directory. Directory version authenticators
continue recursively to the file system root, protecting the
entire file system image. The SFS-RO system [13] used
a similar technique to fix the contents of a read-only file
system without versioning. Our method differs in that it
is incremental and accounts for updates.

For efficiency reasons, we bind versions to the direc-
tory’s authenticator lazily. Figure 1 shows how direc-
tory D binds to filesS, T, U . This is done by including
the authenticators for specific versionsS1, T2, U4 that
were current at the time versionD2 was created. How-
ever, subsequent file versions (e.g.S2, T3) may be cre-
ated without updating the directory version authentica-
tor AD2

. The system updates the directory authenticator
only when the directory contents change;i.e., files are
created, destroyed, or renamed. In this example, when
deleting fileU (Figure 1), the authenticator is updated to
the current versions. Alternatively, were we to bind di-
rectory version authenticators directly to the content of
the most recent file version, they would need to be up-
dated every time that a file is written. This includes all
parent directories recursively to the file system root – an
obvious performance concern as it would need to be done
on every write.

Binding a directory authenticator to a file version
binds it to all subsequent versions of that file, by hash
chaining of the file versions. This is limited to the por-
tion of the file’s version chain within the scope of the
directory. A rename moves a file from one directory’s
scope to another. Ext3cow employs timestamps for ver-
sion numbers, which can be used to identify the valid file
versions within each directory version.

Updating directory authenticators creates a time-space
trade-off similar to that of publication frequency (see
Section 4). When auditing a directory at a given point

AD2
=HK(00||rD2

) ⊕ HK(01||〈1〉||name(S)||AS1
)

⊕HK(01||〈2〉||name(T)||AT2
)

⊕HK(01||〈3〉||name(U)||AU4
)

⊕HK(10||MD2
) ⊕ HK(11||AD1

)

AD3
=HK(00||rD3

) ⊕ HK(01||〈1〉||name(S)||AS4
)

⊕HK(01||〈2〉||name(T)||AT5
)

⊕HK(10||MD3
) ⊕ HK(11||AD2

)

2S 4S3S1S

1T 3T2T

3U1U 2U 4U

D2D1

1T 3T 4T2T 5T

3U1U 2U 4UX

2S 3S 4S1S

D2 D3D1

Figure 1: Directory version authenticators before and after file U is deleted. Equations show the full (not incremental)
computation.

in time, the auditor must access the directory at the time
when its was created and then follow the children files’
hash chains forward to the specified point in time. Up-
dating directory authenticators more frequently may be
desirable to speed the audit process.

5 File System Implementation

We have implemented digital audit trails using XOR
MAC in ext3cow [31], an open-source, block-versioning
file system designed to meet the requirements of elec-
tronic records legislation. Ext3cow supports file system
snapshot, per-file versioning, and a time-oriented inter-
face. Versions of a file are implemented by chaining in-
odes together in which each inode represents a version.
The file system traverses the inode chain to generate a
point-in-time view of a file. Ext3cow provides the fea-
tures needed for an implementation of audit trails: it sup-
ports continuous versioning, creating a new version on
every write, and maintains old and new versions of data
and metadata concurrently for the incremental computa-
tion of version authenticators. We store version authen-
ticators for a file in its inode. We have already retrofitted
the metadata structures of ext3cow to support versioning
and secure deletion (based on authenticated encryption
[32]). Version authenticators are a straightforward exten-
sion to ext3cow’s already augmented metadata, requiring
only a few bytes per inode.

5.1 Metadata for Authentication

Metadata in ext3cow have been improved to support in-
cremental versioning authenticators for electronic audit
trails. To accomplish this, ext3cow “steals” a single data
block pointer from the inode, replacing it with an authen-

tication block pointer,i.e. a pointer to disk block holding
authentication information. Figure 2 illustrates the meta-
data architecture. The number of direct blocks has been
reduced by one, from twelve to eleven, for storing an
authenticator block (i data[11]). Block stealing for
authenticators reduces the effective file size by only one
file system block, typically 4K.

Each authenticator block stores five fields: the current
version authenticator (Avi

), the authenticator for the pre-
vious version (Avi−1

), the one-way hash of the authenti-
cator for the previous version (HK(11||Avi−1

)), the au-
thenticator for the penult-previous version (Avi−2

), and
the the one-way hash of the authenticator for the penult-
previous version (HK(11||Avi−2

)). Each authenticator
computation requires access to the previous and penult-
previous authenticators and their hashes. By storing au-
thenticators and hashes for previous versions together,
the system avoids two read I/Os: one for each previ-
ous version authenticator and hash computations. When
a new version is generated and a new inode is created,
the authenticator block is copy-on-written and “bumps”
each entry;i.e., copying the once current authenticator
(Avi

) to the previous authenticator (Avi−1
), and the pre-

vious authenticator (Avi−1
) and hash (HK(11||Avi−1

))
to the penult-previous authenticator (Avi−2

) and hash
(HK(11||Avi−2

)). The once current authenticator (Avi
)

is zeroed, and is calculated on an as-needed basis.

In almost all cases, authenticator blocks do not in-
crease the number of disk seeks performed by the system.
The block allocator in ext3cow makes efforts to collocate
data, metadata, and authenticator blocks in a single disk
drive track, maintaining contiguity. Authenticator blocks
are very likely to be read out of the disk’s track cache.
The same disk movement that reads inode or data blocks
populates the track cache.

2 1 1D a t a *D a t a *D a t a *A u t h B l o c k *S i n g l e I n d .D a t a *D o u b l e I n d .D a t a *T r i p p l e I n d .D a t a *

A v iA v i � 1H K (1 1 | | A v i � 1)A v i � 2H K (1 1 | | A v i � 2)
I n o d e A u t h e n t i c a t o r B l o c ki _ i n oi _ d a t a [0]i _ d a t a [1]. . .i _ d a t a [1 0]i _ d a t a [1 1]i _ d a t a [1 2]i _ d a t a [1 3]i _ d a t a [1 4]

Figure 2: Metadata architecture to support version au-
thenticators.

5.2 Key Management

Key management in ext3cow uses lockboxes [17] to store
a per-file authentication key. The file owner’s private key
unlocks the lockbox and provides access to the authen-
tication key. Lockboxes were developed as part of the
authenticated encryption and secure deletion features of
ext3cow [32].

6 Experimental Results

We measure the impact of authentication on versioning
file systems and compare the performance characteris-
tics of HMAC and XOR MAC in the ext3cow versioning
file system. We begin by comparing the CPU and disk
throughput performance of HMAC and XOR MAC by
using two micro-benchmarks: one designed to contrast
the maximum throughput capabilities of each algorithm
and one designed to highlight the benefits of the incre-
mental properties of XOR MAC. We then use a traced file
system workload to illustrate the aggregate performance
benefits of incremental authentication in a versioning file
system. Lastly, we use file system traces to charac-
terize some of the overheads of generating authentica-
tors for the auditing environment. Both authentication
functions, XOR MAC and HMAC, were implemented
in the ext3cow file system using the standard HMAC-
SHA1 keyed-hash function provided by the Linux kernel
cryptographic API [25]. For brevity, XOR MAC imple-

mented with HMAC-SHA1 is further referred to as XOR
MAC-SHA1. All experiments were performed on a Pen-
tium 4, 2.8GHz machine with 1 gigabyte of RAM. Trace
experiments were run on a 80 gigabyte ext3cow partition
of a Seagate Barracuda ST380011A disk drive.

6.1 Micro-benchmarks

To quantify the efficiency of XOR MAC, we conducted
two micro-benchmark experiments:createandappend.
The create test measures the throughput of creating
and authenticating files of size2N bytes, whereN =
0, 1, . . . , 30 (1 byte to 1 gigabyte files). The test mea-
sures both CPU throughput,i.e. the time to calculate
a MAC, and disk throughput,i.e. the time to calcu-
late a MAC and write the file to disk. Files are created
and written in their entirety. Thus, there are no bene-
fits from incremental authentication. Theappendexper-
iment measures the CPU and disk throughput of append-
ing 2N bytes to the same file and calculating a MAC,
whereN = 0, 1, . . . , 29 (1 byte to 500 megabytes). For
XOR MAC, an append requires only a MAC of a new
random value, a MAC of each new data block and an
XOR of the results with the file’s authenticator. HMAC
does not have this incremental property and must MAC
the entire file data in order to generate the correct authen-
ticator, requiring additional read I/O. We measure both
warm and cold cache configurations. In a warm cache,
previous appends are still in memory and the read occurs
at memory speed. In practice, a system does not always
find all data in cache. Therefore, the experiment was also
run with a cold cache; before each append measurement,
the cache was flushed.

Figure 3(a) presents the results of thecreatemicro-
benchmark. Traditional HMAC-SHA1 has higher CPU
throughput than XOR MAC-SHA1, saturating the CPU
at 134.8 MB/s. The XOR MAC achieves 118.7 MB/s
at saturation. This is expected as XOR MAC-SHA1
performs two calls to SHA1 for each block (see Equa-
tion 3), compared to HMAC-SHA1 that only calls SHA1
twice for each file, resulting in additional computation
time. Additionally, SHA1 appends the length of the mes-
sage that it’s hashing to the end of the message, padding
up to 512-bit boundaries. Therefore, XOR MAC-SHA1
hashes more data, up ton*512 bits more forn blocks.

Despite XOR MAC’s computational handicap, disk
throughput measurements show little performance dis-
parity. HMAC-SHA1 achieves a maximum of 28.1 MB/s
and XOR MAC-SHA1 a maximum of 26.6 MB/s. This
illustrates that calculating new authenticators for a file
system is I/O-bound, making XOR MAC-SHA1’s ulti-
mate performance comparable to that of HMAC-SHA1.

The results of theappendmicro-benchmark make a
compelling performance argument for incremental MAC

 20

 40

 60

 80

 100

 120

 140

 160

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

T
hr

ou
gh

pu
t (

M
by

te
s/

se
c)

File Size (Kbytes)

HMAC-SHA1 CPU
XOR MAC-SHA1 CPU

HMAC-SHA1 Disk
XOR MAC-SHA1 Disk

(a) Create

 20

 40

 60

 80

 100

 120

 140

 160

 1 10 100 1000 10000 100000

T
hr

ou
gh

pu
t (

M
by

te
s/

se
c)

Append Size (Kbytes)

XOR MAC-SHA1 CPU
HMAC-SHA1 CPU

XOR MAC-SHA1 Disk
HMAC-SHA1 Disk

HMAC-SHA1 Disk-Cold

(b) Append

Figure 3: Results of micro-benchmarks measuring the CPU anddisk throughput.

computation. Figure 3(b) shows these results – note
the log scale. We observe XOR MAC-SHA1 outper-
forms HMAC-SHA1 in both CPU and disk through-
put measurements. XOR MAC-SHA1 bests HMAC-
SHA1 CPU throughput, saturating at 120.3 MB/s, com-
pared to HMAC-SHA1 at 62.8 MB/s. Looking at
disk throughput, XOR MAC-SHA1 also outperforms the
best-case of an HMAC calculation, warm-cache HMAC-
SHA1, achieving a maximum 31.7 MB/s, compared to
warm-cache HMAC-SHA1 at 20.9 MB/s and cold-cache
HMAC-SHA1 at 9.7 MB/s. These performance gains
arise from the incremental nature of XOR MACs. In ad-
dition to the extra computation to generate the MAC, an
ancillary read I/O is required to bring the old data into
the MAC buffer. While theappendbenchmark is con-
trived, it is a common I/O pattern. Many versioning file
systems implement versioning with a copy-on-write pol-
icy. Therefore, all I/O that is not a full overwrite is, by
definition, incremental and benefits from the incremental
qualities of XOR MAC.

6.2 Aggregate Performance

We take a broader view of performance by quantifying
the aggregate benefits of XOR MAC on a versioning file
system. To accomplish this, we replayed four months of
system call traces [35] on an 80 gigabyte ext3cow par-
tition, resulting in 4.2 gigabytes of data in 81,674 files.
Despite their age, these 1996 traces are the most suit-
able for these measurements. They include information
that allow multiple open/close sessions on the same file
to be correlated – necessary information to identify ver-
sioning. More recent traces [11, 19, 36, 39] do not in-
clude adequate information to correlate open/close ses-
sions, are taken at too low a level in the IO system to
be useful, or would introduce new ambiguities, such as
the effects of a network file system, into the aggregate

No Authentication XOR MAC HMAC

1.98 MB/s 1.77 MB/s 0.11 MB/s

Table 1: The trace-driven throughput of no authentica-
tion, XOR MAC and HMAC.

measurements. Our experiments compare trace-driven
throughput performance as well as the total computation
costs for performing a digital audit using the XOR MAC
and HMAC algorithms. We analyze aggregate results of
run-time and audit performance and examine how the in-
cremental computation of MACs benefits copy-on-write
versioning.

6.2.1 Write Performance

The incremental computation of XOR MAC minimally
degrades on-line system performance when compared
with a system that does not generate audit trails (No
Authentication). In contrast, HMAC audit trails reduce
throughput by more than an order of magnitude (Ta-
ble 1). We measure the average throughput of the sys-
tem while replaying four months of system call traces.
The traces were played as fast as possible in an effort
to saturate the I/O system. The experiment was per-
formed on ext3cow using no authentication, HMAC-
SHA1 authentication, and XOR MAC-SHA1 authenti-
cation. XOR MAC-SHA1 achieves a 93.9% improve-
ment in run-time performance over HMAC-SHA1: 1.77
MB/s versus 0.11 MB/s. HMAC-SHA1’s degradation re-
sults from the additional read I/O and computation time
it must perform on every write. XOR MAC-SHA1 in-
curs minimal performance penalties owing to its abil-
ity to compute authenticators using in-cache data. XOR
MAC-SHA1 achieves 89% of the throughput of a system
with no authentication.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

N
um

be
r

of
 IO

s

IO Size (Kbytes)

(a) Number of write I/Os by I/O size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

N
um

be
r

of
 IO

s

File Size (Kbytes)

(b) Number of write I/Os by file size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 IO
 S

iz
e/

F
ile

 S
iz

e

File Size (Kbytes)

(c) Average write I/O size as ratio of the file size by file size

Figure 4: Characterization of write I/Os from trace-drivenexperiments.

To better understand the run-time performance differ-
ences between XOR MAC and HMAC, we characterize
the number and size of writes and how they are written
to various files in the system. By looking at each write
request as a function of its destination file size, we can
see why incremental computation of MACs is beneficial
to a file system. Our observations confirm three things:
(1) Most write requests are small, (2) write requests are
evenly distributed among all file sizes, and (3) the size
of write requests are usually a tiny fraction of the file
size. Figure 4(a) presents statistics on the number and
size of write I/Os, whereas Figure 4(b) shows number
of write I/Os performed by file size. Both plots are log-
log. We observe that of the 16,601,128 write I/Os traced
over four months, 99.8% of the I/Os are less than 100K,
96.8% are less than 10K, and 72.4% are less than 1K
in size. This shows that a substantial number of I/Os
are small. We also observe that files of all sizes receive
many writes. Files as large as 100 megabytes receive as
many as 37,000 writes over the course of four months.
Some files, around 5MB in size, receive nearly two mil-
lion I/Os. These graphs show that I/O sizes are, in gen-
eral, small and that files of all sizes receive many I/Os.

The relationship between I/O size and file size reveals
the necessity of incremental MAC computation. Figure
4(c) presents the average write I/O size as a ratio of the
file size over file sizes. This plot shows that there are
few files that receive large writes or entire overwrites in
a single I/O. In particular, files larger than 2MB receive
writes that are a very small percentage of their file size.
The largest files receive as little as 0.025% of their file
size in writes and nearly all files receive less than 25% of
their file size in write I/Os. It is this disproportionate I/O
pattern that benefits the incremental properties of XOR
MAC. When most I/Os received by large files are small,
a traditional HMAC suffers in face of additional com-
putation time and supplementary I/Os. The performance
of XOR MAC, however, is immune to file size and is a
function of write size alone.

6.2.2 Audit Performance

To generate aggregate statistics for auditing, we aged the
file system by replaying four months of traced system
calls, taking snapshots daily. We then performed two au-
dits of the file system, one using HMAC-SHA1 and one

Number of Versions HMAC-SHA1 (seconds) XOR MAC-SHA1 (seconds)

All 11209.4 10593.1
≥ 2 670.1 254.4

Table 2: The number of seconds required to audit an entire filesystem using HMAC-SHA1 and XOR MAC-SHA1 for
all files and only those files with two or more versions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100 120

T
im

e
to

 C
om

pu
te

 A
ud

it
(s

ec
on

ds
)

Number of Versions

XOR MAC-SHA1
HMAC-SHA1

(a) The CDF of the time to audit an entire file system for files with
two or more versions by number of versions

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000 8000
T

im
e

to
 C

om
pu

te
 A

ud
it

(m
s)

File Size (Kbytes)

85 Versions

75 Versions

33 Versions

10 Versions

21 Versions

20 Versions

 XOR MAC-SHA1
 HMAC-SHA1

(b) Aggregate results for auditing an entire file system by file size

Figure 5: Aggregate auditing performance results for XOR MAC-SHA1 and HMAC-SHA1.

using XOR MAC-SHA1. Our audit calculated authenti-
cators for every version of every file. Table 2 presents
the aggregate results for performing an audit using XOR
MAC-SHA1 and HMAC-SHA1. The table shows the re-
sult for all files and the result for those files with two
or more versions. Auditing the entire 4.2 gigabytes of
file system data using standard HMAC-SHA1 techniques
took 11,209 seconds, or 3.11 hours. Using XOR MAC-
SHA1, the audit took 10,593 seconds, or 2.94 hours; a
savings of 5% (10 minutes).

Most files in the trace (88%) contain a single version,
typical of user file systems. These files dominate audit
performance and account for the similarity of HMAC
and XOR MAC results. However, we are interested in
file systems that contain medical, financial, and govern-
ment records and, thus, will be populated with versioned
data. To look at auditing performance in the presence
of versions, we filter out files with only one version.
On files with two or more versions, XOR MAC-SHA1
achieves a 62% performance benefit over HMAC-SHA1,
670 versus 254 seconds. A CDF of the time to audit files
by number of versions is presented in Figure 5(a). XOR
MAC-SHA1 achieves a 37% to 62% benefit in compu-
tation time over HMAC-SHA1 for files with 2 to 112
versions. This demonstrates the power of incremental
MACs when verifying long version chains. The longer
the version chain and the more data in common, the bet-
ter XOR MAC performs.

Looking at audit performance by file size shows that
the benefit is derived from long version chains. Figure
5(b) presents a break down of the aggregate audit results
by file size. There exists no point at which XOR MAC-
SHA1 performs worse than HMAC-SHA1, only points
where they are the same or better. Performance is the
same for files that have a single version and for files that
do not share data among versions. As the number of ver-
sions increase and much data are shared between ver-
sions, large discrepancies in performance arise. Some
examples of files with many versions that share data are
annotated. XOR MAC shows little performance variance
with the number of versions.

6.3 Requirements for Auditing

As part of our audit model, authenticators are transfered
to and stored at a third party. We explore the storage and
bandwidth resources that are required for version authen-
tication. Four months of file system traces were replayed
over different snapshot intervals. At a snapshot, authen-
tication data are transfered to the third party, committing
the file system to that version history. Measurements
were taken at day, hour, and minute snapshot intervals.
During each interval, the number of file modifications
and number of authenticators generated were captured.

Figure 6 presents the size of authentication data gen-
erated over the simulation time for the three snapshot in-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

A
ut

he
nt

ic
at

or
 T

ra
ns

fe
r

S
iz

e
(K

by
te

s)

Simulation Time (Days)

Day
Hour

Minute

Figure 6: Size of authentication data from four months
of traced workloads at three snapshot intervals.

tervals. Naturally, the longer the snapshot interval, the
larger the number of authenticators generated. However,
authentication data are relatively small; even on a daily
snapshot interval, the largest transfer is 450K, represent-
ing about 22,000 modified files. Authenticators gener-
ated by more frequent snapshot (hourly or per-minute)
never exceed 50KB per transfer. Over the course of
four months, a total of 15.7MB of authentication data are
generated on a daily basis from 801,473 modified files,
22.7MB on a hourly basis from 1,161,105 modified files,
and 45.4MB on a per-minute basis from 2,324,285 modi-
fied files. The size of authenticator transfer is invariant of
individual file size or total file system size; it is directly
proportional to the number of file modifications made in
a snapshot interval. Therefore, the curves in Figure 6 are
identical to a figure graphing the number of files modi-
fied over the same snapshot intervals.

7 Future Work

Conducting digital audits with version authenticators
leaves work to be explored. We are investigating authen-
tication and auditing models that do not rely on trusted
third parties. We also discuss an entirely different model
for authentication based on approximate MACs, which
can tolerate partial data loss.

7.1 Alternative Authentication Models

Having a third party time-stamp and store a file system’s
authenticators may place undue burden, in terms of stor-
age capacity and management, on the third party. Fortu-
nately, it is only one possible model for a digital auditing
system. We are currently exploring two other possible ar-
chitectures for managing authentication data; a storage-
less third party and cooperative authentication. In a

storage-less third party model a file system would gen-
erate authenticators and transmit them to a third party.
Instead of storing them, the third party would MAC the
authenticators and return them to the file system. The file
system stores both the original authenticators and those
authenticated by the third party. In this way, the third
party stores nothing but signing keys, placing the bur-
den of storing authenticators on the file system. When
the file system is audited, the auditor requests the sign-
ing keys from the third party and performs two authenti-
cation steps: first, checking the legitimacy of the stored
authenticators and then checking the authenticity of the
data themselves.

This design has limitations. The scheme doubles the
amount of authentication data transfered. Additionally,
because the third party keeps no record of any file, an
attacker may delete an entire file system without detec-
tion or maintain multiple file systems, choosing which
file system to present at audit time. Portions of the file
system may not be deleted or modified, because the au-
thenticators for version chains and directory hierarchies
bind all data to the file system root authenticator.

A further variant groups peers of file systems together
into a cooperative ring, each storing their authentication
data on an adjoining file system. A file system would
store the previous system’s authenticator in a log file,
which is subsequently treated as data, resulting in the
authenticators being authenticated themselves. This au-
thenticator for the log file is stored on an adjoining sys-
tem, creating a ring of authentication. This design re-
lieves the burden on a single third party from managing
all authentication data and removes the single point of
failure for the system. This architecture also increases
the complexity of tampering by a factor ofN , the num-
ber of links of in the chain. Because an adjoining file
system’s authenticators are kept in a single log file, only
one authenticator is generated for that entire file system,
preventing a glut of authentication data.

7.2 Availability and Security

A verifiable file system may benefit from accessing only
a portion of the data to establish authenticity. Storage
may be distributed across unreliable sites [9, 18], such
that accessing it in it’s entirety is difficult or impossi-
ble. Also, if data from any portion of the file system are
corrupted irreparably, the file system may still be authen-
ticated, whereas with standard authentication, altering a
single bit of the input data leads to a verification failure.

To audit incomplete data, we propose the use
approximately-secure and approximately-correct MAC
(AMAC) introduced by Di Crescenzoet al. [8]. The sys-
tem verifies authenticity while tolerating a small amount
of modification, loss, or corruption of the original data.

We propose to make the AMAC construction incre-
mental to adapt it to file systems; in addition, we plan to
use XOR MAC as a building block in the AMAC con-
struction [8], to allow for incremental update. The atom
for the computation is a file system block, rather than a
bit. The approximate security and correctness then refer
to the number of corrupted or missing blocks, rather than
bits. The exact level of tolerance may be tuned.

The chief benefit of using the AMAC construction
over regular MAC constructions lies in verification. Se-
rial and parallel MACs require the entire message as in-
put to verify authenticity. Using AMAC, a portion of the
original message can be ignored. This allows a weaker
statement of authenticity to be constructed even when
some data are unavailable. The drawback of AMAC lies
in the reduction of authenticity. With AMAC, some data
may be acceptably modified in the original source.

8 Conclusions

We have introduced a model for digital audits of version-
ing file systems that supports compliance with federally
mandated data retention guidelines. In this model, a file
system commits to a version history by transmitting au-
dit metadata to a third party. This prevents the owner
of the file system (or a malicious party) from modifying
past data without detection. Our techniques for the gen-
eration of audit metadata use incremental authentication
methods that are efficient when data modifications are
fine grained, as in versioning file systems. Experimental
results show that incremental authentication can perform
up to 94% faster than traditional serial authentication al-
gorithms. We have implemented incremental authentica-
tion in ext3cow, an open-source versioning file system,
available at:www.ext3cow.com.

9 Acknowledgments

This work was supported by the National Science Foun-
dation (awards CCF-0238305 and IIS-0456027), by the
Department of Energy, Office of Science (award DE-
FG02-02ER25524), and by the IBM Corporation. We
thank Giovanni Di Crescenzo for discussions on the
AMAC construction.

References

[1] A DAMS, C., CAIN , P., PINKAS , D., AND ZUCCHERATO, R.
IETF RFC 3161 Time-Stamp Protocol (TSP). IETF Network
Working Group, 2001.

[2] A MERICAN BANKERS ASSOCIATION. American national stan-
dard for financial institution message authentication (wholesale).
ANSI X9.9, 1986.

[3] BELLARE, M., CANETTI , R., AND KRAWCZYK , H. Key-
ing hash functions for message authentication. InAdvances in
Cryptology - Crypto’96 Proceedings(1996), vol. 1109, Springer-
Verlag, pp. 1–19. Lecture Notes in Computer Science.

[4] BELLARE, M., GOLDREICH, O., AND GOLDWASSER, S. In-
cremental cryptography and application to virus protection. In
Proceedings of the ACM Symposium on the Theory of Computing
(May-June 1995), pp. 45–56.

[5] BELLARE, M., GUÉRIN, R., AND ROGAWAY, P. XOR MACs:
New methods for message authentication using finite pseudoran-
dom functions. InAdvances in Cryptology - Crypto’95 Proceed-
ings(1995), vol. 963, Springer-Verlag, pp. 15–28. Lecture Notes
in Computer Science.

[6] BLACK , J., AND ROGAWAY, P. A block-cipher mode of op-
eration for parallelizable message authentication. InAdvances
in Cryptology - Eurocrypt’02 Proceedings(2002), vol. 2332,
Springer-Verlag, pp. 384 – 397. Lecture Notes in Computer Sci-
ence.

[7] BURNS, R., PETERSON, Z., ATENIESE, G.,AND BONO, S. Ver-
ifiable audit trails for a versioning file system. InProceedings of
the ACM CCS Workshop on Storage Security and Survivability
(November 2005), pp. 44–50.

[8] CRESCENZO, G. D., GRAVEMAN , R., GE, R., AND ARCE,
G. Approximate message authentication and biometric entity au-
thentication. InProceedings of Financial Cryptography and Data
Security(February-March 2005).

[9] DABEK , F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,
AND STOICA, I. Wide-area cooperative storage with CFS. In
Proceedings of the ACM Symposium on Operating Systems Prin-
ciples (SOSP)(October 2001), pp. 202–215.

[10] DAEMEN, J., AND RIJMEN, V. The Design of Rijndael: AES –
the Advanced Encryption Standard. Springer, 2002.

[11] ELLARD , D., LEDLIE, J., MALKANI , P., AND SELTZER, M.
Passive NFS tracing of email and research workloads. InPro-
ceedings of the USENIX File and Storage Technologies Confer-
ence (FAST)(March 2003), pp. 203–216.

[12] FARMER, D., AND VENEMA, W. Forensic Disocvery. Addison-
Wesley, 2004.

[13] FU, K., KASSHOEK, M. F.,AND MAZI ÈRES, D. Fast and secure
distributed read-only file system.ACM Transactions on Com-
puter Systems 20, 1 (2002), 1–24.

[14] GIFFORD, D. K., NEEDHAM, R. M., AND SCHROEDER, M. D.
The Cedar file system.Communications of the ACM 31, 3 (March
1988), 288–298.

[15] HAUBERT, E., TUCEK, J., BRUMBAUGH, L., AND YURCIK,
W. Tamper-resistant storage techniques for multimedia systems.
In IS&T/SPIE Symposium Electronic Imaging Storage and Re-
trieval Methods and Applications for Multimedia (EI121)(Jan-
uary 2005), pp. 30–40.

[16] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION .
Information technology - security techniques - data integrity
mechanism using a cryptographic check function employing a
block cipher algorithm. ISO/IEC 9797, April 1994.

[17] KALLAHALLA , M., RIEDEL, E., SWAMINATHAN , R., WANG,
Q., AND FU, K. Plutus: Scalable secure file sharing on untrusted
storage. InProceedings of the USENIX Conference on File and
Storage Technologies (FAST)(March 2003), pp. 29–42.

[18] KUBIATOWICZ , J., BINDEL , D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMANDI , R., RHEA, S., WEATH-
ERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore: An architecture for global-scale persistent storage.
In Proceedings of the ACM Conference on Architecture Support
for Programming Languages and Operating Systems (ASPLOS)
(November 2000), pp. 190–201.

[19] KUENNING, G. H., POPEK, G. J.,AND REIHE, P. An analysis
of trace data for predictive file caching in mobile computing. In
Proceedings of the Summer USENIX Technical Conference(June
1994).

[20] LAMPORT, L. Password authentication with insecure comunica-
tion. Communications of the ACM 24, 11 (1981), 770–772.

[21] MANIATIS , P.,AND BAKER, M. Enabling the archival storage of
signed documents. InProceedings of the USENIX Conference on
File and Storage Technologies (FAST)(January 2002), pp. 31–46.

[22] MCCOY, K. VMS File System Internals. Digital Press, 1990.

[23] M ICALI , S. Efficient certificate revocation. Tech. Rep.
MIT/LCS/TM-542b, Massachusetts Institute of Technology,
1996.

[24] MONROE, J. Emerging solutions for content storage. Presenta-
tion at PlanetStorage, 2004.

[25] MORRIS, J. The Linux kernel cryptographic API.Linux Journal,
108 (April 2003).

[26] MUNISWAMY-REDDY, K.-K., HOLAND , D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In
Proceedings of the USENIX Annual Technical Conference(June
2006).

[27] MUNISWAMY-REDDY, K.-K., WRIGHT, C. P., HIMMER , A.,
AND ZADOK , E. A versatile and user-oriented versioning file
system. InProceedings of the USENIX Conference on File and
Storage Technologies (FAST)(March 2004), pp. 115–128.

[28] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.
Digital signature standard (DSS). Federal Information Processing
Standards (FIPS) Publication 186, May 1994.

[29] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.
Secure hash standard. Federal Information Processing Standards
(FIPS) Publication 180-1, April 1995.

[30] PATIL , S., KASHYAP, A., SIVATHANU , G., AND ZADOK , E.
I3FS: An in-kernel integrity checker and intrusion detectionfile
system. InProceedings of the Large Installation System Admin-
istration Conference (LISA)(November 2004), pp. 67–78.

[31] PETERSON, Z., AND BURNS, R. Ext3cow: A time-shifting file
system for regulatory compliance.ACM Transcations on Storage
1, 2 (2005), 190–212.

[32] PETERSON, Z. N. J., BURNS, R., HERRING, J., STUBBLE-
FIELD, A., AND RUBIN , A. Secure deletion for a versioning file
system. InProceedings of the USENIX Conference on File And
Storage Technologies (FAST)(December 2005), pp. 143–154.

[33] QUINLAN , S., AND DORWARD, S. Venti: A new approach to
archival storage. InProceedings of the USENIX Conference on
File And Storage Technologies (FAST)(January 2002), pp. 89–
101.

[34] RIVEST, R. L. All-or-nothing encryption and the package trans-
form. InProceedings of the Fast Software Encryption Conference
(1997), vol. 1267, pp. 210–218. Lecture Notes in Computer Sci-
ence.

[35] ROSELLI, D., AND ANDERSON, T. E. Characteristics of file sys-
tem workloads. Research report, University of California,Berke-
ley, June 1996.

[36] ROSELLI, D., LORCH, J.,AND ANDERSON, T. A comparison of
file system workloads. InProceedings of the USENIX Technical
Conference(2000), pp. 41–54.

[37] SCHNEIER, B., AND KELSEY, J. Secure audit logs to support
computer forensics.ACM Transactions on Information Systems
Security 2, 2 (1999), 159–176.

[38] SNODGRASS, R. T., Ed.The TSQL2 Temporal Query Language.
Kluwer, 1995.

[39] SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND

GANGER, G. R. Metadata efficiency in versioning file systems.
In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST)(March 2003), pp. 43–58.

[40] UNITED STATES CONGRESS. The Health Insurance Portability
and Accountability Act (HIPAA), 1996.

[41] UNITED STATES CONGRESS. The Sarbanes-Oxley Act (SOX).
17 C.F.R. Parts 228, 229 and 249, 2002.

[42] WALDMAN , M., RUBIN , A. D., AND CRANOR, L. F. Publius:
A robust, tamper-evident, censorship-resistant, Web publishing
system. InProceedings of the USENIX Security Symposium(Au-
gust 2000), pp. 59–72.

[43] WEATHERSPOON, H., WELLS, C., AND KUBIATOWICZ , J.
Naming and integrity: Self-verifying data in peer-to-peersys-
tems. InProceedings of the Workshop on Future Directions in
Distributed Computing(June 2002), pp. 142–147.

