
Mac Hackin’ 2:
Snow Leopard Boogaloo
Charlie Miller

Independent Security Evaluators

cmiller@securityevaluators.com

@0xcharlie

Dino A. Dai Zovi

Trail of Bits

ddz@theta44.org

@dinodaizovi

Tuesday, January 4, 2011

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

Tuesday, January 4, 2011

About Us

We hack Macs

Every year at
PWN2OWN (Dino:
2007, Charlie:
2008-2010)

We’ve probably hacked
yours also (look for an
extra thread in launchd)

Wrote the book on it

Tuesday, January 4, 2011

About Us

We hack Macs

Every year at
PWN2OWN (Dino:
2007, Charlie:
2008-2010)

We’ve probably hacked
yours also (look for an
extra thread in launchd)

Wrote the book on it

Tuesday, January 4, 2011

About Us

We hack Macs

Every year at
PWN2OWN (Dino:
2007, Charlie:
2008-2010)

We’ve probably hacked
yours also (look for an
extra thread in launchd)

Wrote the book on it

Tuesday, January 4, 2011

About this talk

The Mac Hackers Handbook came out in March 2009
and covered Tiger and Leopard

That summer Snow Leopard came out with many
runtime security improvements (and broke the book’s
example code)

This talk will discuss just how much real protection
these improvements provide and how they make
exploitation impossible

Tuesday, January 4, 2011

About this talk

The Mac Hackers Handbook came out in March 2009
and covered Tiger and Leopard

That summer Snow Leopard came out with many
runtime security improvements (and broke the book’s
example code)

This talk will discuss just how much real protection
these improvements provide and how they make
exploitation more fun!

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

Overview

Tuesday, January 4, 2011

64-Bit

Tuesday, January 4, 2011

64-Bit

Tuesday, January 4, 2011

64-bit in Mac OS X 10.6

Snow Leopard’s increased use of 64-bit was touted as
one of its key features

Primarily for making more memory available to
applications

But Apple even touts 64-bit applications as a security
feature

It offers some security benefits, but not as much as
you would hope

Tuesday, January 4, 2011

Technically, That is True

Function arguments
are no longer stored on
the stack

Hardware-supported
non-executable heap
memory

Heap block header
metadata checksums
(also in 32-bit procs)

Tuesday, January 4, 2011

Tuesday, January 4, 2011

Older macs - all 32 bit

Tuesday, January 4, 2011

The Safari browser itself is 64-bit
Safari runs 32-bit plugins out-of-process

Flash Player is 32-bit
QuickTime Plugin is 32-bit
Some plugins are 64-bit and run in-process (Java)

WebKitPluginAgent (64-bit) and WebKitPluginHost (32-
bit) communicate over Mach IPC
Avoids requiring a 32-bit Safari to watch YouTube

Tuesday, January 4, 2011

“Crash resiliency”

Tuesday, January 4, 2011

Older macs

...and users who launch Safari under 32 bit

Plugins run within Safari’s (32-bit) address space

$ vmmap PID
__TEXT 00001000-0052b000 [5288K] r-x/rwx SM=COW /
Applications/Safari.app/Contents/MacOS/Safari
...
__TEXT 19dcb000-1a50b000 [7424K] r-x/rwx SM=COW /
Users/cmiller/Library/Internet Plug-Ins/Flash Player.plugin/Contents/
MacOS/Flash Player

Tuesday, January 4, 2011

TargetShare (TM)

Mac	
 Browser	
 Marketshare

Safari
Firefox
Chrome
Other

Silverlight

Java

QuickTime

Flash

0 13 25 38 50 63 75 88 100

Safari	
 Plugin	
 Availability

Statistics for June 2010, StatOwl.com
Tuesday, January 4, 2011

64 is 32 More Than I Need to Pwn

27% of Mac users use a 32-bit web browser
The “more secure” Firefox and Chrome browsers

85% of Mac Safari users have 32-bit plugins available
Flash Player or QuickTime Plugin
Both have a long history of security vulnerabilities

Most key client-side applications are still 32-bit
Office, iWork, iTunes, iLife, etc.

But Adobe CS5 is 64-bit
Don’t have to worry about getting owned by a PSD

Tuesday, January 4, 2011

64-Bits Are Hard, Bro

64-bit exploitation has various complications

NULLs in every memory address

Subroutines take arguments in registers, not stack

All data memory regions are non-executable

No more RWX __IMPORT regions

64-bit exploitation techniques are not yet really needed on
Mac OS X, especially for targeting client-side applications

Server-side attack surface is minimal and not critical

Tuesday, January 4, 2011

Shellcode

x86 shellcode doesn’t typically work

For example, no metasploit Mac OS X shellcode
works on x86_64

First public x86_64 OS X shellcode was from @fjserna

Connect() shellcode, contains NULL’s

See Charlie’s POC 2010 presentation for cleaner
and smaller version (120 bytes vs. 165)

Tuesday, January 4, 2011

Tools

Some tools won’t work on 64-bit

pydbg

valgrind

GDB still works fine

Tuesday, January 4, 2011

Sandboxing

Tuesday, January 4, 2011

Sandboxing

Tuesday, January 4, 2011

Sandboxing

Implements fine-grained access controls

Accessing resources (sockets, files, shared mem)

Sending/receiving Mach messages

Sending/receiving BSD signals

Started via sandbox_init() call (or sandbox_exec)

Tuesday, January 4, 2011

Mac OS X sandboxing architecture

User process calls sandbox_init() (in libSystem)

libSystem dynamically loads libSandbox for support
functions

Initiates action in the kernel via SYS__mac_syscall
system call

Sandbox.kext kernel module hooks syscalls via
TrustedBSD interface and limits access as defined in
policy

Tuesday, January 4, 2011

Snow Leopard sandboxing

No client-side applications are sandboxed, including

Safari

Mail

iTunes

Plugins including Flash and QuickTime

Tuesday, January 4, 2011

Heap

Tuesday, January 4, 2011

Heap

Tuesday, January 4, 2011

Heap

Tuesday, January 4, 2011

Welcome to the Heap of Pain

Some significant improvements were made in the heap
implementation in Snow Leopard compared to
Leopard

Check out Libc source code from
opensource.apple.com

Change from scalable_malloc.c to magazine_malloc.c

Tuesday, January 4, 2011

10.5 Heap Pointer Checksums

Free list pointer checksums detect accidental overwrites, not
intentional ones

cksum(ptr) = (ptr >> 2) | 0xC0000003

verify(h) = ((h->next & h->prev & 0xC0000003) ==
0xC0000003)

uncksum(ptr) = (ptr << 2) & 0x3FFFFFFC

Overwriting the next/prev pointers in a free block allows an
attacker to write a chosen value to a chosen location when that
block is removed from the free list

Tuesday, January 4, 2011

Heap metadata overwrites

In Leopard it is trivial to overwrite heap metadata to get
arbitrary 4-byte writes (see MHH)

You know how to fake the checksums

In Snow Leopard, this can’t easily be done due to
security cookie

Tuesday, January 4, 2011

Snow Leopard

In Snow Leopard, random security cookie used
...
 szone->cookie = arc4random();
...
static INLINE uintptr_t
free_list_checksum_ptr(szone_t *szone, void *ptr)
{
 uintptr_t p = (uintptr_t)ptr;
 return p | free_list_gen_checksum(p ^ szone->cookie);
}

static INLINE uintptr_t free_list_gen_checksum(uintptr_t ptr)
{
 uint8_t chk;

 chk = (unsigned char)(ptr >> 0);
 chk += (unsigned char)(ptr >> 8);
 chk += (unsigned char)(ptr >> 16);
 chk += (unsigned char)(ptr >> 24);

 return chk & (uintptr_t)0xF;
}

Tuesday, January 4, 2011

Application data overflows
#include <iostream>
using namespace std;

class Base
{
public:
 virtual void function1() {};
 virtual void function2() {};
};

int main()
{
 int *buf = (int *)malloc(4*sizeof(int));;
 memset(buf, 0x41, 4*sizeof(int));

 Base *pClass = new Base();
 buf[4] = (int) buf; // overflow into pClass on heap

 pClass->function1();
}

(gdb) r
Starting program: /Users/cmiller/test2
Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x41414141
0x41414141 in ?? ()

Tuesday, January 4, 2011

10.5 Zones, Regions, and Allocations

A process has a number of
malloc zones

Each malloc zone manages
allocations in tiny, small, large,
and huge size ranges

Tiny and small range
allocations are managed in
regions

Huge and large allocations are
managed directly

A region contains allocations of
sizes bounded by the region
typeWebKitPluginHost

DefaultMallocZone_0x2000

Tiny

SmallLargeHuge
Tiny

QuartzCore_0x1806c00

Tiny

SmallLargeHuge
Tiny

Tuesday, January 4, 2011

10.6 Magazine Malloc

Each zone has a magazine
per CPU-core (or virtual
CPU-core if hyperthreading
is used)

Regions are now specific to
the magazine of the CPU
core that created them

Allocations are stored in the
region specific to the CPU
core running the thread that
allocated them

Process

DefaultMallocZone
_0x2000

Magazine 0

Tiny

Small

Tiny

Magazine 1

Tiny

Small

Tiny

Tuesday, January 4, 2011

Exploiting Magazine Malloc (10.6)

Free block free list pointer checksums are now XOR’d with a
randomly generated security cookie

Effectively defeats heap block metadata overwrites

Per-CPU regions complicate reliable exploitation if overflown or
freed object is “tiny” or “small”

Non-deterministic use of different regions complicates heap
manipulation

Reliability may become dependent on number of CPU cores
on target (i.e. new MBP has 8 b/c of HyperThreading)

Tuesday, January 4, 2011

ASLR

Tuesday, January 4, 2011

Library Randomization

Tuesday, January 4, 2011

Library Randomization

Tuesday, January 4, 2011

Library Randomization

No significant change from Leopard

Library load locations are randomized per machine
periodically when new apps or updates are installed

Not per application or application launch

See /var/db/dyld/

dyld, application binary, heap, stack are not randomized

64-bit memory space allows for “more” randomization

Tuesday, January 4, 2011

Fixed RX areas (ROP targets)

dyld: 0x7fff5fc00000

binary: 0x100000000

commpage 64-bit: 0x7fffffe00000

Tuesday, January 4, 2011

Fun with wild writes

Many times with exploitation, the “primitive” is to be
able to write a DWORD to memory

This write should eventually lead to getting control of
$pc

Tuesday, January 4, 2011

32-bit processes

Still use lazy symbol binding

At fixed, predictable location in memory

Is writable

Tuesday, January 4, 2011

32-bit example

int main(){
 int *p = 0x201c;
 *p = 0xdeadbeef;
}

$ gcc -g -m32 -o test test.c

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0xdeadbeef
0xdeadbeef in ?? ()

Tuesday, January 4, 2011

64-bit

No easy function pointers like in 32-bit (no __IMPORT)

However, the heap is not randomized

szone pointers are available starting at predictable
address following main executable’s __DATA segment

Memory management pointers

In particular szone_malloc()

Tuesday, January 4, 2011

64-bit example
int main(){
 long int *p = 0x100004018;
 *p = 0xdeadbeefbabecafe;
 malloc(16);
}

gcc -g -o test test.c

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: 13 at address: 0x0000000000000000
0x00007fff821ddf06 in malloc_zone_malloc ()
(gdb) x/i $pc
0x7fff821ddf06 <malloc_zone_malloc+78>: call QWORD PTR [r13+0x18]
(gdb) x/4wx $r13+0x18
0x100004018: 0xbabecafe 0xdeadbeef 0x821e01da 0x00007fff

Tuesday, January 4, 2011

Execute Disable

Tuesday, January 4, 2011

Execute Disable

Tuesday, January 4, 2011

XD, DEP, PAGEEXEC

On 32-bit x86, OS memory page permissions are a lie

Operating System shows R/W/X permissions

Hardware only supports RO or RW page protections

XD (Intel) and NX (AMD) added extra page protection
bit for eXecute

PaX PAGEEXEC feature used ITLB/DTLB desync to
simulate support of R/W/X memory page permissions

Tuesday, January 4, 2011

XD < DEP < PAGEEXEC

Mac OS X “Execute Disable” on 32-bit x86 procs

Only thread stacks are non-executable

Windows DEP

Covers stack/heap/data unless a DLL opts out

Can be disabled with one function call

PaX PAGEEXEC

The original implementation and most thorough

Tuesday, January 4, 2011

Leopard

Stacks were non-executable

Heap was executable, even though page permissions
indicated it was not

Heap could always be executed, even if explicitly set to
not allow execution

Same for data pages and new pages allocated from
the operating system via mmap(), vm_allocate(), etc.

Tuesday, January 4, 2011

64-bit Non-Executable Memory

Support for non-executable page protections are
required as part of the 64-bit ABI

64-bit processes under Snow Leopard are good about
keeping memory RW, RX, or RO

no RWX except for JIT

Tuesday, January 4, 2011

Snow Leopard

Stack and heap are protected (64-bit processes)

This is the biggest security difference between
Leopard and Snow Leopard

32 bit processes (i.e. Flash and QT plugin) have
executable heap

Exploiting QT or Flash is very easy!

32 bit processes (old macs) have executable heaps

Tuesday, January 4, 2011

What about a Flash JIT spray?

Flash runs in a separate process, so can’t be used for
JIT spray for (non-Flash) browser bugs

Tuesday, January 4, 2011

JIT spray within Safari

Potential candidates are Java and Javascript

$ vmmap 27581 | grep 'rwx/rwx'
Java 000000011e001000-0000000121001000 [48.0M] rwx/rwx SM=PRV
JS JIT generated code 0000451ca3200000-0000451cab200000 [128.0M] rwx/rwx SM=PRV
JS JIT generated code 0000451cab200000-0000451d23200000 [1.9G] rwx/rwx SM=NUL

Tuesday, January 4, 2011

Java

Java memory region is allocated at the “top” of the
heap

Heap is not randomized so you have a reasonable idea
of where to find it

Region is only 48mb and cannot be expanded

Not a reliable choice for exploitation

Tuesday, January 4, 2011

Javascript

Webkit JS RWX region is much larger: 1.9 gb

However, Webkit randomizes the load address, those
bastards

#define INITIAL_PROTECTION_FLAGS (PROT_READ | PROT_WRITE | PROT_EXEC)
...
 // Cook up an address to allocate at, using the following recipe:
 // 17 bits of zero, stay in userspace kids.
 // 26 bits of randomness for ASLR.
 // 21 bits of zero, at least stay aligned within one level of the pagetables.
 //
 // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
 // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
 // 2^24, which should put up somewhere in the middle of usespace (in the address range
 // 0x200000000000 .. 0x5fffffffffff).
 intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
 randomLocation += (1 << 24);
 randomLocation <<= 21;
 m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize,
INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY
, 0);

Tuesday, January 4, 2011

The good news (for us)

The location of dyld is not randomized

The location of the binary is not randomized

The location of the commpage is not randomized

We can perform Return Oriented Programming (ROP)
to allocate new executable memory or change page
permissions for our shellcode

Tuesday, January 4, 2011

Return-Oriented Programming

Instead of returning to
functions, return to instruction
sequences followed by a
return instruction

Can return into middle of
existing instructions to
simulate different instructions

All we need are useable byte
sequences anywhere in
executable memory pages

B8 89 41 08 C3

mov eax, 0xc3084189

mov [ecx+8], eax
ret

“The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”, Hovav Shacham (ACM CCS 2007)

Tuesday, January 4, 2011

Credit: Dr. Raid’s Girlfriend
Tuesday, January 4, 2011

64-Bit Mac OS X ROP

Passing parameters by register makes things harder than in
x86, requiring more “returns”

Code segments in dyld and commpage are not very large

Main executable binary may be large enough, but hard to
fingerprint

Problems with rbp

See Charlie’s presentation at POC 2010 for full ROP details
for Snow Leopard x86_64

Tuesday, January 4, 2011

Wrapping Up

Tuesday, January 4, 2011

Snow Leopard vs. Leopard

More secure than ever?

Yes, but not by that much since Snow Leopard still only
implements a cheap imitation of ASLR

Safe from attackers?

Depends on who your attackers are

May stay safe from mass malware, but not from targeted
attacks

Will APT switch to Mac?

Tuesday, January 4, 2011

Mac OS X 10.7 “Lion”

Will Mac OS X 10.7 Lion be the King of the Internet
Jungle?

Yes, if they implement full ASLR and code signing
enforcement for built-in and Mac App Store
applications

Pre-releases are under NDA, so who knows?

Tuesday, January 4, 2011

Questions
Charlie:

cmiller@securityevaluators.com

@0xcharlie

Dino:

ddz@theta44.org

@dinodaizovi

Tuesday, January 4, 2011

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

