Mlac Hackin 2:
Snow Leopard Boogaloo

Charlie-Miller DINorADalrZovi
Independent:-Security:Evaluators:Irail-of:Bits

cmiller@secturityevaluators.com:+-adz@thetad4.org
@Oxcharlie @dinodaizovi

Tuesday, January 4, 2011

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

Tuesday, January 4, 2011

About Us

= \\e hack Macs

= [Every year at
PWN2OWN (Dino:
2007, Charlie:
2008-2010)

» \Ne've probably hacked
yours also (look for an
extra thread in launcha)

x \\Nrote the book on it

Tuesday, January 4, 2011

About Us

= \\e hack Macs

= [Every year at
PWN2OWN (Dino:
2007, Charlie:
2008-2010)

» \Ne've probably hacked
yours also (look for an
extra thread in launcha)

x \\Nrote the book on it

Tuesday, January 4, 2011

About Us

x \\e hack Macs T|I(‘1\ [(l(

. Every yoar a H CKer'sS

PWN20WN (Dino

2007, Charlie: ST owi Mue Handbook

2008-2010)

» \Ne've probably hacked
yours also (look for an
extra thread in launcha)

x \\Nrote the book on it

Tuesday, January 4, 2011

About this talk

®x [he Mac Hackers Handbook came out in-March 2009
and covered Tiger and l.eopard

= [hat summer snow: Leopard came out with many
runtime security improvements (and broke the book’s
example code)

» [his talk will discuss just how much real protection
these improvements provide and how they make
exploitation impossible

Tuesday, January 4, 2011

About this talk

®x [he Mac Hackers Handbook came out in-March 2009
and covered Tiger and l.eopard

= [hat summer snow: Leopard came out with many
runtime security improvements (and broke the book’s
example code)

» [his talk will discuss just how much real protection
these improvements provide and how they make
exploitation more fun!

Tuesday, January 4, 2011

Overview

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X

offers a multilayered system of defenses against

viruses and other malicious applications, or

malware. For example, it prevents hackers from

harming your programs through a technique called

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit applications
in Snow Leopard is that they're even more
secure from hackers and malware than the
32 -bit versions. That's because 64 -bit
applications can use more advanced
security techniques to fend off malicious
code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use

of hardware -based

execute disable for heap

memory. In addition, memory on the
system heap is marked using strengthened
checksums, helping to prevent attacks that
rely on corrupting memory.

Overview

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X

offers a multilayered system of defenses against

viruses and other malicious applications, or

malware. For example, it prevents hackers from

harming your programs through a technique called

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit applications

wrSTiow Leopard is that they're even more

secure from hackers and malware than the
2 -bit versions. That's because 64 -bit_.

S earruseTore aavanced
security techniques to fend off malicious
code. First, 64 -bit
applications can keep
their data out of harm's
way thanks to a more
secure function
argument-passing
mechanism and the use
of hardware -based
execute disable for heap
memory. In addition, memory on the
system heap is marked using strengthened
checksums, helping to prevent attacks that
rely on corrupting memory.

Overview

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X

offers a multilayered system of defenses against

viruses and other malicious applications, or

malware For example, it prevents hackers from

harming your programs through a technique called
sandboxlng J restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

More secure than ever.

SHow Leopard is that they're even more
secure from hackers and malware than the
2~ b|t versions. That's because 64 - bl p

Another benefit of the 64 -bit appllcauons

security techniques to fend off malicious
code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use

of hardware -based

execute disable for heap

memory. In addition, memory on the
system heap is marked using strengthened
checksums, helping to prevent attacks that
rely on corrupting memory.

Overview

Defense against viruses and other malware. More secure than ever.

With virtually no effort on your part, Mac OS X

i , i) Another benefit of the 64 -bit bit applications
offers a multilayered system of defenses against

LirrSTiow Leopard is that they re even moxe

viruses and other malicious applications, or S
malware For example, it prevents hackers from

secure from hackers and malware than the
2~ b|t versions. That's because 64 - bl p

appllca oS tarruserrore-aavanced
security techniques to fend off malicious
code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use

of hardware -based

execute disable for heap

memory. In addition_memory on the
=system heap is marked using strengthene
checksums, helping to prevent attacks that

ely on corrupting memory.

T aa Sep— e

harming your programs through a technique called
sandboxlng J restricting what actions programs
can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

Overview

Defense against viruses and other malware. More secure than ever.

With virtually no effort on your part, Mac OS X

i , i) Another benefit of the 64 -bit bit applications
offers a multilayered system of defenses against

LirrSTiow Leopard is that they re even moxe

viruses and other malicious applications, or S
malware For example, it prevents hackers from

secure from hackers and malware than the
2~ b|t versions. That's because 64 - bl p

appllca oS tarruserrore-aavanced
security techniques to fend off malicious
code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use

of hardware -based

execute disable for heap

memory. In addition_memory on the
=system heap is marked using strengthene
checksums, helping to prevent attacks that

ely on corrupting memory.

T aa Sep— e

finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

Overview

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware For example, it prevents hackers from

finding their targets, an§
in your Mac from attacks.

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit bit applications
LirrSTow Leopard is that they re even moxe
secure from hackers and malware than the
2~ b|t versions. That's because 64 - bl p

appllca oS tarruserrore-aavanced
security techniques to fend off malicious
code. First, 64 -bit
applications can keep
their data out of harm's
way thanks to a more
secure function
argument-passing
mechanism and the use
of hardware -based
execute disable for heap
memory. In addition_memory on the
=system heap is marked using strengthene
checksums, helping to prevent attacks that
ely on corrupting memory.

T aa Sep— e

N

Overview

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware For example, it prevents hackers from

finding their targets, an§
in your Mac from attacks.

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit bit applications
LirrSTow Leopard is that they re even moxe
secure from hackers and malware than the
2~ b|t versions. That's because 64 - bl p

appllca oS tarruserrore-aavanced
security techniques to fend off malicious
code. First, 64 -bit
applications can keep
their data out of harm's
way thanks to a more
secure function
argument-passing
mechanism and the use
~of hardware-based
execute disable for heap]
Jmemory. In -,u_ [iop BB mory (
vstem eap IS ‘marked using strenqthene
checksums, helping to prevent attacks that
ely on corrupting memory.

T aa Sep— e

N

04-Bit

Tuesday, January 4, 2011

04-Bit

The 64 -bit applications in Snow Leopard are even
more secure from hackers and malware than the

32 -bit versions. That's because 64 -bit applications
can use more advanced security techniques to fend
off malicious code. Learn more about 64 -bit »

e e 0 2 9 0 0 0 s s e s e e e s e e e A A A

Tuesday, January 4, 2011

64-bit in Mac Os X 10.6

= SNow Leopard’s increased use of 64-bit was touted as
one of its key features

® Primarily for making more memory:available to
applications

» But Apple even touts 64-bit applications as a security
feature

|t offers some security benefits, but not as much as
you would hope

Tuesday, January 4, 2011

lechnically, 1hat Is lrue

More secure than ever. x Function arguments
Another benefit of the 64 -bit applications

in Snow Leopard is that they're even more are no |Onger Stored on
secure from hackers and malware than the ‘the S‘tack

32 -bit versions. That's because 64 -bit

applications can use more advanced

security techniques to fend off malicious n Hal’dware-SUppOr’[ed
code. First, 64 -bit

applications can keep _ non_exeCUtable heap
their data out of harm's /—\ memOry

way thanks to a more '

secure function :

argument-passing : = Heap block header
VR . metadata checksums
execute disable for heap (aISO in 82_b|t pI’OCS)

memory. In addition, memory on the

system heap is marked using strengthened
checksums, helping to prevent attacks that
rely on corrupting memory.

Tuesday, January 4, 2011

SO Activity Monitor -

O @ @ [All Processes, Hierarchically 3] Q- Filter

Quit Process Inspect Sample Process Show Filter

PID Process Nams User % CPU Threads Real Mem Kind A
6930 ddz 0.1 17 167.4 MB Intel™ = = =
8522 S5 sbileDeayiceHelper ddz 0.0 3 6.9 MB Intel: :
9900 ddz 0.1 8 155.2 MB Intell I
9905 : ddz 0.0 2 2.8 MB Intel) I
169 v PGP Engine ddz 0.0 21 20.9 MB Intell I
191 PGPdiskEngine ddz 0.0 g 2.3 MB Intel '
178 pgp-agent ddz 0.0 4 3.8 MB Intel: :
197 PCPsyncEngine ddz 0.0 4 6.8 MB Intel I
44318 ddz 0.0 7 100.0 MB Intely I
7702 IFocus ddz 0.0 7 37.1 MB Intell I
9906 Microsoft Database Daemon ddz 0.0 3 7.5 MB Intel! .
9219 & Aquamacs ddz 0.4 2 34.9 MB lntel: :
44631 ddz 0.0 14 67.8 MB Intell I
163 nitch UlAgent ddz 0.0 3 5.3 MB Intely I
33404 v & Google Chrome ddz 0.0 12 103.5 MB Intell I
44594 Google Chrome Renderer ddz 0.0 4 53.0 MB Intel’ !
36076 Google Chrome Renderer ddz 0.0 4 47.7 MB Intel: :
43826 Coogle Chrome Renderer ddz 0.0 4 45.9 MB IntelI I
37323 Coogle Chrome Renderer ddz 0.2 4 29.0 MB Intel) I
44602 Google Chrome Renderer ddz 0.0 4 34.3 MB Intell I
33508 Coogle Chrome Renderer ddz 0.0 4 33.8 MB Intel' '
33408 Coogle Chrome Renderer ddz 0.0 4 37.3 MB lntel: :
43692 Coogle Chrome Renderer ddz 0.0 4 90.9MB Intel . . . 4

5560 L ical ddz 0.0 5 37.9 MB Intel (64 bit)

Tuesday, January 4, 2011

Older macs - all 32 bi

Activity Monitor

A

> | All Processes

Quit Process Inspect Sample Process Show Filter
PID Process Name User %X CPU Threads Real Mem Kind Virtual Mem

41
426
18

40
20775
417
276
12

58

29

39
20754
385
ilo
334
322
20656
26

Tuesday, January 4, 2011

loginwindow
» Mall
mDNSResponder
mds
mdworker
Monitor
mysqld
notifyd
novacomd
ntpd
ODSAgemt
| Pages
pboard
privoxy
pri_disp_service
pri_naptd

g9 Safari

securityd

| cpu

cmiller
cmiller
_mdnsresponder
root
cmiller
cmiller
mysq

root
root
root
root
cmuller
cmiller
root
root
root
cmiller
root

System Memory

Disk Activity

0.0
0.4
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
1.3
0.0

HE N O N WWBm W oOoON

Disk Usage

6.6 MB
84.0 M8
1.8 M8
102.8 M8
11.3 M8
7.3 M8
11.2 M8
572 KB
620 KB
796 KB
964 KB
62.3 M8
S20 K8
3.5MB
14.0 M8
4.2 MB
106.8 M8
2.6 MB

Network

% User

X System: 6.76

% |dle: 89.23

Threads: 322

Processes: 81

CPU Usage

Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel
Intel

Intel

PowerPC

Intel
Intel
Intel

Intel

15.6 MB
66.7 MB
29.4MB
569.6 M8
32.2 M8
30.2 M8
S0.1 M8
26.7 MB
10,9 M8
17.3MB
27.9MB
35.3 M8
18.3 M8
213.4 MB
37.8 M8
29.5 M8
97.0MB &
6 8MB ¥

Activity Monitor

0.0

Quit Process Inspect Sample Process
PID Process Name % CPU Threads Real Mem Kind
14.0 MB Intel (64 bit)
192.3 MB Intel (64 bit)
6.5 MB Intel (64 bit)
9.3 MB Intel (64 bit)
1.0 MB Intel (64 bit)
105.6 MB Intel
6.6 MB Intel
42.1 MB Intel (64 bit)

168 CrowlHelperApp 0.0

44741 9 Safari 0.6 3
44769 Image Capture Extension 0.0

229 AppleSpell.service 0.0
44816 WebKitPluginAgent 0.0
44823 Flash Player (Safari Internet plug-in) 0.1
44845 QuickTime Plugin (Safari Internet plug-in) 0.0

143 SystemUIServer 0.2

» [he Safari browser itself Is 64-bit
= Safari runs 32-bit plugins out-of-process
= Flash Player s 32-0bit
x QuickTime Plugin:is 32-bit
= Some plugins are 64-bit and run in-process (Java)

= \NVebKitPluginAgent (64-bit) and WebKitPluginHost (32-
bit) communicate over Mach IPC

= Avoids requiring a 32-bit sSafari to watch YouTube

SO NN WS O

Tuesday, January 4, 2011

‘Crash resiliency”

- + Fintp://192.168.1.182/ ¢ Q

(] =5 casting YouTube - R..he do this? My First Java Applet How do | te...y computer? Apple Yahoo! Google Maps

Version: MAC 10,0,45,2

Flash Player (Safari Internet plug-in) quit
unexpectedly.

Click Report to see more detailed information and
send a report to Apple.

lgnore Report.

Tuesday, January 4, 2011

Older macs

® _..and users who launch Safari under 32 bit

= Plugins run within Safari’s (32-bit) address space

$ vmmap PID
~TEXT 00001000-0052b000 [5288K] r-x/rwx SM=COW /

Applications/Safari.app/Contents/MacOS/Safari

~ TEXT 19decbhb000-1a50b000 [7424K] r-x/rwx SM=COW /
Users/cmiller/Library/Internet Plug-Ins/Flash Player.plugin/Contents/

MacOS/Flash Player

Tuesday, January 4, 2011

TargetsShare (I M)

Mac Browser Marketshare Safari Plugin Availability

Silverlight
Java

QuickTime

Safari Flash
Firefox
@ Chrome 0 13 25 38 50 63 75 88100
@ Other

Statistics for June 2010, StatOwl.com

04 1s 32 More Than | Need to Pwn

» 27% of Mac users use a 32-bit web lbrowser
® The “more secure” Firefox and GChrome browsers
x 85% of Mac Safari users have 32-bit plugins available
® Flash Player or QuickTime Plugin
» Both have a long history: of security vulnerabilities
» Most key client-side applications are still 32-bit
x Office, IWork; iTunes,; iLife, etc.
= But Adobe CS5 is 64-bit
» Don’t have to worry about getting owned by a PSD

Tuesday, January 4, 2011

04-Bits Are Hard, Bro

= 04-bit exploitation has various complications
»x NULLSs in every memory address
» Subroutines take arguments in registers, not stack

» All data memory regions are non-executable

x No more RWX _IMPORT regions

= 04-bit exploitation techniques are not yet really needed on
Mac OS X, especially for targeting client-side applications

x Server-side attack surface is minimal and not critical

Tuesday, January 4, 2011

Shellcode

® X306 shellcode doesn't typically work

x For example, no metasploit Mac OS X shellcode
WOrks on x86. 64

® First public x86._64 OS X shellcode was from @fjserna
= Connect() shellcode, contains NULL's

x See Charlie’s POC 2010 presentation for cleaner
and smaller version (120 bytes vs. 165)

Tuesday, January 4, 2011

Tools

. Some tools won't work on 64-bit
* pydbg
= valgrind

x GDB still works fine

Tuesday, January 4, 2011

Sandboxing

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

™ 3 I 3 " - 4
R e 7 7

Tuesday, January 4, 2011

Sandboxing

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or

——

or example, it prevents hackersSfrem _

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, angl what other
sQrograms they can launch. Other automatic security#€atures include
Library= ndomization, which prevents makeious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

Tuesday, January 4, 2011

Sandboxing

® |mplements fine-grained access controls
= ACCesSINg resources (sockets, files, shared mem)
» Sending/receiving Mach messages
» Sending/receiving BSD signals

» Started via sandbox_init() call (or sandbox_exec)

Tuesday, January 4, 2011

Mac OS X sandboxing architecture

» User process calls sandbox_init() (in libSystem)

® |ibSystem dynamically:loads libSandbox for support
functions

» |nitiates action in the kernelvia SYS__mac_syscall
system call

» Sandbox.kext kernel module hooks syscalls via
TrustedBSD interface and limits access as defined in

policy

Tuesday, January 4, 2011

Snow Leopard sandboxing

= No client-side applications are sandboxed, including
= Safari
= Mail
= [[unes

= Plugins including Flash and QuickTime

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit applications

in Snow Leopard is that they're even more

secure from hackers and malware than the
I—l ea 32 -bit versions. That's because 64 -bit

applications can use more advanced

security techniques to fend off malicious

code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use

of hardware -based

execute disable for heap

memory. In addition, memory on the

system heap is marked using strengthened

checksums, helping to prevent attacks that

rely on corrupting memory.

Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit applications

in Snow Leopard is that they're even more

secure from hackers and malware than the
I—l ea 32 -bit versions. That's because 64 -bit

applications can use more advanced

security techniques to fend off malicious

code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function

argument-passing

mechanism and the use
of hardware -based

ion,_memory on the

Stem heap is marked using strengthefet-

checksums, helping to prevent attacks that

corrupting memory. ‘
Tuesday, January 4, 2011

More secure than ever.

Another benefit of the 64 -bit applications

in Snow Leopard is that they're even more

secure from hackers and malware than the
I—l ea 32 -bit versions. That's because 64 -bit

applications can use more advanced

security techniques to fend off malicious

code. First, 64 -bit

applications can keep

their data out of harm's

way thanks to a more

secure function
arqument passing

corrupting memory. ‘
Tuesday, January 4, 2011

Welcome to the Heap of Pain

® Some significant improvements were made In the heap
implementation in-Snow: Leopard compared to
Leoparad

» Check out Lilbc source code from
opensource.apple.com

® Change from scalable_malloc.c to magazine_malloc.c

Tuesday, January 4, 2011

10.5 Heap Pointer Checksums

= [Free list pointer checksums detect accidental overwrites, not
Intentional ones

» cksum(ptr) = (ptr >> 2) | OxCO000003

x verify(h) = ((h->next & h->prev & OxCO000003) ==
OxCO000003)

x uncksum(ptr) = (ptr << 2) & OX3FFFFEFFC

= Qverwriting the next/prev pointers in a free block allows an
attacker to write a chosen value to a chosen location when that
block is removed from the free list

Tuesday, January 4, 2011

Heap metadata overwrites

® |n Leopard it Is trivial to overwrite heap metadata to get
arbitrary 4-byte writes (see MHH)

= You know how to fake the checksums

= [0 Snow Leopard, this can’t easily be done due to
security cookie

Tuesday, January 4, 2011

Snow Leopard

= |n Snow Leopard, random security cookie used

szone->cookie = arcdrandom () ;

static INLINE uintptr_t
free list checksum ptr(szone t *szone, void *ptr)
{
uintptr t p = (uintptr t)ptrc;
return p | free list gen checksum(p 7 szone->cookie);

}

static INLINE uintptr t free list gen checksum(uintptr t ptr)

t
uint8 t chk;

chk = (unsigned char) (ptx >> 0);
chk += (unsigned char) (ptr >> 8);
chk += (unsigned char) (ptr >> 16);
chk += (unsigned char) (ptr >> 24);

return chk & (uintptr t)OxE;

Tuesday, January 4, 2011

Application data overflows

#include <iostream>
using namespace std;

class BRase

{

public:
virtual void functioenl() {};
virtual void function2 () {}:

}r

int main()

{
int *buf = (int *)malloc(4*sizeof(int)) ;;
memset (buf, 0x41, 4*sizeof(int));

Base *pClass = new Base()
buf{4] = (int) buf; // overflow into pClass on heap

pClass—->functionl () ;

(gdb) r
Starting program: /Users/cmiller/test?2
Reading symbols for shared libraries ++. done

Program received signal EXC BAD ACCESS, Could not access memory.
Reason: KERN INVALID ADDRESS at address: 0x41414141
0x41414141 in 27?2 ()

Tuesday, January 4, 2011

10.5 Zones, Regions, and Allocations

= Aprocess has a number of
DefaultMallocZone_0x2000 malloc zones

= Each malloc zone manages
allocations in tiny, small, large,
and huge size ranges

= [iny and small range
allocations are managed in
regions

= Huge and large allocations are
managed directly

= A region contains allocations of
sizes bounded by the region

VWEDKITFIUgINROoSt type

10.6 Magazine Malloc

DefaultMallocZone xEach zone has a magazine
per CPU-core (or virtual
CPU-core if hyperthreading
IS used)

= Regions are now specific to
the magazine of the CPU
core that created them

» Allocations are stored in the
| region specific to the CPU
IViagazine 1 core running the thread that
allocated them

Process

Tuesday, January 4, 2011

Exploiting Magazine Malloc (10.6)

= Free block free list pointer checksums are now XOR'd with a
randomly generated security: cookie

= [Effectively defeats heap block metadata overwrites

x Per-CPU regions complicate reliable exploitation if overflown or
freed object Is “tiny” or “small’

= Non-deterministic use of different regions complicates heap
manipulation

x Reliability may become dependent on number of CPU cores
on target (l.e. new MBP has 8 b/c of HyperThreading)

Tuesday, January 4, 2011

ASLE

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called
“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory

Tuesday, January 4, 2011

Library Randomization

Tuesday, January 4, 2011

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called
“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory

Library Randomization

Tuesday, January 4, 2011

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called
“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
jrams_they can launch. Other automatic security features include

rary Randomizationwhich prevents malicious commands from

Library Randomization

» No significant change from Leopard

x | jbrary load locations are randomized per machine
periodically when new apps or-updates are installed

= Not per application or application launch
x See /var/db/dyld/
x dyld, application binary, heap, stack are not randomized

x 64-bit memory space allows for “more” randomization

Tuesday, January 4, 2011

Fixed RX areas (ROP targets)

= dyld: Ox/fffofc00000
= pinary: Ox100000000
® commpage 64-bit: Ox/ffffe00000

Tuesday, January 4, 2011

Fun with wild writes

= Many times with exploitation; the “primitive™ is to be
able to write a DWORD to-memory

= [his write should eventually lead to getting control of
$pc

Tuesday, January 4, 2011

32-bit processes

» Still use lazy symbol binding
= At fixed, predictable location in-memory

» |S writable

__la_symbol_ptr segment dword public ‘DATA" use32
aSSUME -

assune c¢s:__la_symbol_ptr

exit ptr dd offsel 1 mp %1
__la_symbol_ptr ends

Tuesday, January 4, 2011

32-bit example

int main () {
int *p = 0x201c;
*p = 0Oxdeadbeef;
}

S gcec —-g -m32 -0 test test.c

Program received signal EXC BAD ACCESS, Could not access memory.
Reason: KERN INVALID ADDRESS at address: (Oxdeadbeef
Oxdeadbeef in 22 ()

Tuesday, January 4, 2011

o64-bit

= No easy function pointers like in-32-bit (no _ IMPORT)
» However, the heap Is not randomized

® Szone pointers are avallable starting at predictable
address following main executable’s - DATA segment

= Memory management pointers

® |0 particular szone_malloc)

Tuesday, January 4, 2011

o04-bit example

int main () {
long int *p = 0x100004018;
*p = Oxdeadbeefbabecafe;
malloc(1l6);

GCCHTOLFONESIICESINE

Program received signal EXC BAD ACCESS, Could not access memory.
Reason: 13 at address: 0x0000000000000000

0x00007£££821ddf06 in malloc zone malloc ()

(gdb) x/1i Spc

O0x7£££821ddf06 <malloc zone malloc+78>: call OQWORD PTR [r13+0x18]
(gdb) x/4wx Sr13+0x18

0x100004018: Oxbabecafe Oxdeadbeef 0x821lellda 0x00007f£ff

Tuesday, January 4, 2011

Execute Disable

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from
finding their targets, and Execute Disable, which protects the memory
in your Mac from attacks.

LI P N N N N N [N e e e e S e
‘o808 %8", :

Tuesday, January 4, 2011

Execute Disable

Defense against viruses and other malware.

With virtually no effort on your part, Mac OS X
offers a multilayered system of defenses against
viruses and other malicious applications, or
malware. For example, it prevents hackers from
harming your programs through a technique called

“sandboxing” — restricting what actions programs

can perform on your Mac, what files they can access, and what other
programs they can launch. Other automatic security features include
Library Randomization, which prevents malicious commands from

finding their targets, an Execute Dlsable scvhich protects the memory
in your Mac from attacks. .

LI P N N N N N [N e e e e S e

Tuesday, January 4, 2011

XD, DEP, PAGEEXEG

= On 32-bit X806, OS memory page permissions are a lie
» Operating System shows R/AW/X permissions

» Hardware only supports RO-or RW-page protections

= XD (Intel) and NX (AMD) -added extra page protection
pit for execute

n PaX PAGEEXEG feature used [TLB/DTLB desync to
simulate support of RAV/X memory page permissions

Tuesday, January 4, 2011

XD < DEP < PAGEEXEG

x Mac OS X “Execute Disable” on 32-bit Xx86 procs
» Only thread stacks are non-executable

x \Windows DEP
» Covers stack/heap/data unless a DLL opts out

x Can be disabled with one function call

x PaxX PAGEEXEC

= [he original iImplementation and most thorough

Tuesday, January 4, 2011

Leopard

. Stacks were non-executable

® Heap was executable, even though page permissions
iIndicated it was not

® Heap could always lbe executed, even If explicitly set to
not allow execution

= Same for data pages and new pages allocated from
the operating system via mmap(), vm_allocateg(), etc.

Tuesday, January 4, 2011

o04-bit Non-Executable Memory

= Support for non-executable page protections are
required as part of the 64-bit ABI

» B4-pit processes under Snow: LLeopard are good about
keeping memory RW, RX,; or RO

= No RWX except for JIT

Tuesday, January 4, 2011

Snow Leopard

» Stack and heap are protected (64-bit processes)

= [his Is the biggest security difference between
Leopard and Snow: LLeopard

® 32 bit processes (i.e. Flash-and QT plugin) have
executable heap

= Exploiting QT or Flash is very easy!

® 32 DIt processes (old macs) have executable heaps

Tuesday, January 4, 2011

What about a Flash JI1 spray?

» [lash runs in a separate process, so can't be used for
JIT spray for (non-Flash) browser bugs

Tuesday, January 4, 2011

JIT spray within Safarl

» Potential candidates are Java and Javascript

S vmmap 27581 | grep 'rwx/rwx'

Java 000000011e001000-0000000121001000 [48.0M] rwx/rwx SM=PRV
JS JIT generated code 0000451ca3200000-0000451¢cab200000 [128.0M] rwx/rwx SM=PRV
JS JIT generated code 0000451ecab200000-0000451d23200000 [1.9G] rwx/rwx SM=NUL

Tuesday, January 4, 2011

Java

» Java memory region is allocated at the “top” of the
heap

® Heap IS hot randomized so you have a reasonable idea
of where to find it

® Region is only 48mi-and cannot be expanded

= Not a reliable choice for exploitation

Tuesday, January 4, 2011

Javascript

® \NVebkit JS RWX region is much-larger: 1.9-gb

x However, \Webkit randomizes the load address, those
bastards

#define INITIAL PROTECTION FLAGS - (PROT_ READ .| -PROT -WRITE | PROT EXEC)

// Cook up an address to allocate at, using the following recipe:
1/ 17 bits of zero, stay in userspace kids.
// 26 bits of randomness for ASLR.
1/ 21 bits of zero, at least stay aligned within one level of the pagetables.
1/
// Butl - as a temporary workaround for some plugin problems (rdar://problem/6812854),
// for now instead of 2726 bits of ASLR lets stick with 25 bits of randomization plus
// 2724, which should put up somewhere in the middle of usespace (in the address range
/7 0x200000000000 .. OxSfffffffffff).
intptr t randomLocation = arc4random() & ((1 << 25) - 1);
randomLocation += (1 << 24);
randomLocation <<= 21;
m base = mmap (reinterpret cast<void*>(randomLocation), m totalHeapSize,
INITIAL PROTECTION FLAGS, MAP PRIVATE | MAP ANON, VM TAG FOR EXECUTABLEALLOCATOR MEMORY
PO

Tuesday, January 4, 2011

The good news (for us)

» [he location of dyld is not randomized

= [he location of the binary is not randomized
» [he location of the commpage IS not randomized

= \Ne can perform Return Oriented Programming (ROP)
to allocate new executable memory or change page
permissions for our shellcode

Tuesday, January 4, 2011

Return-Oriented Programming

mov eax, 0xc3084189

» |nstead of returning to
functions, return to instruction
sequences followed by a
return instruction

x Can return into middle of
existing instructions to
simulate different instructions

x All we need are useable byte
sequences anywhere in
executable memory pages

mov [ecx+8], eax
ret

“The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”, Hovav Shacham (ACM CCS 2007)

Tuesday, January 4, 2011

RONEH, BUlI Il SIEED mﬁ cutlmG
Wi [AFttENS £7011 MEEAZINES
1CU EHE CURNG DTR
fERrUKI[0AS frOM REERK:

B.@mﬂ Credit: Dr. Raid’s Girlfriend

64-Bit Mac Os X ROP

= Passing parameters by register makes things harder than in
X80, requiring more “returns’

x Code segments in dyld'and commpage are not very large

»x Main executable binary may be large enough, but hard to
fingerprint

= Problems with rop

x See Charlie’s presentation at POC 2010 for full ROP details
for Snow LLeopard x86_64

Tuesday, January 4, 2011

Wrapping Up

Snow Leopard vs. Leopard

»x More secure than ever?

x Yes, but not by that much: since Snow: LLeopard still only
implements a cheap imitation of ASLE

x Safe from attackers?
x Depends on Who your attackers are

= |Vlay stay safe from mass malware, but not from targeted
attacks

= Wil APT switch to Mac??

Tuesday, January 4, 2011

Mac Os X 10.7 "Lion”

= \Will Mac OS X 10.7 Lion be the King of the Internet
Jungle?

® Yes, if they implement fullASLER and code signing
enforcement for built-in-and Mac App Store
applications

n Pre-releases are under NDA, so who knows?

Tuesday, January 4, 2011

Questions

Charlie: DiNo:

cmiller@securityevaluatorsicom:ddz@thetad4.org

@0Oxcharlie @dinodaizovi

Tuesday, January 4, 2011

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

