
W e b A p p l i c a t i o n S e c u r i t y :

T h e D e v i l i s i n t h e D e t a i l s

Session I of III

JD Nir, Security Analyst

Why is this important?

ISE Proprietary

Agenda

• About ISE

• Web Applications and Security

• What is OWASP?

• Vulnerabilities

– Injection-based attacks

– Broken Authentication and Session
Management

– Cross-Site Scripting (XSS)

• Q&A

About ISE

ISE Proprietary

Analysts

• White box

Perspective

• Hackers; Cryptographers

• Reverse Engineers, etc

Talks

Research

• Routers; NAS; Healthcare

M&E Customers

• Content Owners; Vendors; Supply Chain

ISE in M&E

ISE Proprietary

Talks

Involvement

Web Application Security

• What is a vulnerability?

• What causes vulnerabilities?

• Understanding a vulnerability:

– What is it?

– Why does it matter?

– How do I detect it?

– How do I prevent it?

– What nuances should I understand?

What is OWASP?

• Not-for-profit, free, open source resources

• The OWASP Top Ten

INJECTION

Injection – What is it?

Injection – What is it?

Injection – What is it?

Compromise

The malicious code is executed.

Vulnerability

Application flaws inject the malicious code into the application control flow.

Attack

Adversary supplies malicious input, containing embedded code.

Initiation

Application requests input from user.

Injection – Why does it matter?

Asset
Theft

•Passwords,
credentials

•billing
information

Asset
Destruction

•Data

Machine
Manipulation

•Gain
control of
the entire
machine.

Injection – How to detect it

Automated

•Free detection tools are available.

•Best known for SQL inj. is sqlmap

Manual

•Manual code reviews are the only
way to discover subtle errors that
may allow for custom attacks.

Injection – How to prevent it

Method #1: Sanitization

• Input is “cleaned” before getting processed.

• “Validation” restricts users to a set of “safe” inputs.

Some legitimate users may encounter errors.

e.g. Bob O’Neil is told his name can’t contain ’

• “Escaping” replaces potentially dangerous characters

with codes. Before use, the data must be

“unescaped.” e.g. O’Neil → O\’Niell

What is a “safe” set of characters?

Injection – How to prevent it

Method #2: Parameterization

• Use “fixed” commands with variables

holding the place of user data. The attacker

cannot inject code because the command

cannot be changed or have additional code

added to the end.

When available, parameterization is the

safer method of preventing injection.

Injection - Nuances

• Suppressing error pages is not enough. Blind

injection attacks can extract data even

without output!

• Changing backend databases changes the

set of “safe” characters. Make sure to also

switch to the proper sanitization functions.

• Injection goes beyond SQL/LDAP. Command

injection is far more dangerous.

BROKEN AUTHENTICATION AND

SESSION MANAGEMENT

Broken authentication – What is it?

Compromise

Malicious user may now take any action of the legitimate user.

Attack

Malicious user exploits authentication flaws to recover the first user’s session.

Initiation

Legitimate user authenticates, and then finishes session.

Broken authentication – What is it?

Some examples:

• Session IDs included in URL, saved in

browser history

• Session IDs don’t time out

• Passwords are sent over an unencrypted

connection

Broken authentication –

Why does it matter?

• Sessions are double-edged sword.

• Users trust applications.

• Common attack target.

Broken authentication –

How to detect it

Automated

•Very few tests available.

Manual

•Most effective method.

•Important to stay up-to-date; new technologies
and features often open new attack avenues.

•Proper logging can alert to a breach – if logs
are monitored.

Broken authentication –

How to prevent it

• Do not store plaintext passwords.

• Keep session IDs secret, random, and short-

lived.

• Regular security evaluations, either in-house

or contracted, by security professionals who

are up-to-date on latest attacks.

Broken authentication - Nuances

• Client-side authentication alone is never

secure.

• Beware of development backdoors.

• “Defense in Depth.”

• Session and Authentication vulnerabilities

vary drastically in risk. Understanding how

attacks work is crucial when deciding how

and whether to address them.

CROSS-SITE SCRIPTING (XSS)

XSS – What is it?

XSS – What is it?

Compromise

The attacker’s code is embedded in the application.

Vulnerability

When the application displays the user-submitted input, it is processed as code.

Attack

Attacker sends malicious input.

Initiation

Application asks a user for input.

XSS – Why does it matter?

Attackers can execute code
in the target’s browser

Steal
session
cookies.

Redirect
users to

malicious
sites.

Take full
control.

Legitimate users trust your application. Attackers prey on that trust.

XSS – How to detect it

Cross-Site Scripting is an example of Injection. Similar methods apply.

Automated

•Some automated tools exist, but most only catch easily-
exploited vulnerabilities.

Manual

•As always, manual reviews are the only way to detect
sophisticated attacks.

XSS – How to prevent it

• Usually XSS vulnerabilities cannot be

addressed with parameterization. This

means filtering must be used.

• When possible, use validation.

• Look for heavily used escaping libraries.

• “Defense in Depth”

XSS - Nuances

XSS type #1: Reflected attacks

• Best known.

• An application reflects user input onto a

page. An attacker tricks a target in to

navigating to a page with malicious input.

XSS - Nuances

XSS type #2: DOM based attacks

• Similar to reflected attacks, but more

dangerous.

• Injection occurs on client’s machine instead

of the server.

• Attacker can act as user’s browser, including

making changes on user’s computer.

XSS - Nuances

XSS type #3: Persistent attacks

• The most dangerous.

• When an application saves user input and

displays it to other users (e.g. a message

board), many more potential victims are

exposed to an XSS exploit.

XSS - Nuances

• Understanding data flow is crucial.

– Base 64 or other encodings dodge filters

– Data must be properly escaped and unescaped.

• Client-side protections can be evaded and

are not sufficient. However, they are still

necessary to prevent DOM based attacks.

Q u e s t i o n s ?

Next Session:

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposure

contact@securityevaluators.com

mailto:contact@securityevaluators.com

