
Fuzzing: Debrief

The Fuzzers

ProxyFuzz

General Purpose Fuzzer (GPF)

Sulley

ProxyFuzz

Python script which randomly inserts anomalies into
network data

Need a client which continuously generates data for the
proxy to fuzz

Completely unaware of protocol or condition of target

ProxyFuzz

GPF

Starts from a packet capture

Written by the handsome and intelligent Jared DeMott

Custom written “tokAids” describe the format of the
packets, i.e. length fields, data type, etc.

Or default “ASCII”, “Binary” tokAid

Randomly injects anomalies into the packets
(according to the tokAid) and replays them repeatedly

Excerpt from mDNS tokAid
...
 tok=Create_Next_Tok(tok, leg);
 tok->type=LEN;
 tok->covered=1;
 tok->dataLen=1;
 Slurp_Into_Tok(tok, data);
 //Then the next token will be the string that len is associated with
 tok=Create_Next_Tok(tok, leg);
 tok->type=ASCII;
 tok->dataLen=_ndata_to_size8(tok->prev->data);
 Slurp_Into_Tok(tok, data);
 //check to see if we're at the end of the dns name
 if (*(data+(tok->currentTotal)) == 0x00)
 {
 //the null is it's own token
 tok=Create_Next_Tok(tok, leg);
 tok->type=BINARY_END;
 tok->dataLen=1;
 Slurp_Into_Tok(tok, data);
...

GPF

Sulley

A fuzzing framework

User supplies a protocol description to the framework

Framework systematically changes each described
field to a set of anomalies

No randomness, each test case tests something
different

Finite run time

Excerpt from mDNS Sulley File

if s_block_start("query"):
 if s_block_start("name_chunk"):
 s_size("string", length=1)
 if s_block_start("string"):
 s_string("A"*10)
 s_block_end()
 s_block_end()
 s_repeat("name_chunk", min_reps=2, max_reps=40, step=2, fuzzable=True, name="aName")

 s_group("end", values=["\x00", "\xc0\xb0"]) # very limited pointer fuzzing
 s_word(0xc, name="Type", endian='>')
 s_word(0x8001, name="Class", endian='>')
s_block_end()
s_repeat("query", 0, 1000, 40, name="queries")

Sulley

The Plan

Monitoring on Mac:
MothaFuzza Monita

Transparent Python proxy

Records fuzzed data and responses

Attaches to target and monitors health (with Pydbg)

Logs crash reports and restarts target

Can repeat captured data to help in crash analysis

Works independent of the fuzzer being used

MothaFuzza Monita

Iron Chef is Hard

Target has a large attack surface

HTTP, DAAP, web application, mDNS, at least

60 minutes minus build and setup time (x4 machines)

In real life, we’d probably fuzz this for a day or two per
protocol per fuzzer (a week or two)

You saw all the hard parts, just not the “sit back and
wait for bugs” part

Sulley Didn’t finish

Each Sulley test case more or less independent

Can’t skip any without possibly missing bugs

Sulley DAAP fuzzer has 26,283 test cases

Sulley standard HTTP fuzzer has 58,493 test cases

Sulley normally does 1 test case per second

Can be sped up, but can’t do 85k in an hour

In real life, this isn’t an issue: “Run it and forget it”

With more time...

Would customize test cases

i.e. “dialect” of the protocol

(which HTTP headers, variables, etc)

I want more time!

Not enough time to analyze and redo fuzzing

Got code coverage but couldn’t make and send new
test cases to expand coverage

What we didn’t test

Bug(s)

