
Fuzz By Number
More Data About Fuzzing Than You Ever Wanted To Know

Charlie Miller
Independent Security Evaluators

cmiller@securityevaluators.com

March 28, 2008

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com


Who Am I?

Former NSA security guy

Break stuff: iPhone, SecondLife

Give talks

Write books

“Open Source Fuzzing Tools” (co-author)

“Fuzzing for Software Testing and Quality Assurance”

Due out in June



Agenda

Fuzzing, why we care

How do you test fuzzers?

My testing

Results

Why some bugs are harder to find than others

Analysis and fun facts



Fuzzing

Send invalid/semi-valid data into a system

If data is too valid, might not cause problems

If data is too invalid, might be quickly rejected

Monitor system for faults

Not the best tool, but finds lots of bugs

Better at finding some classes of bugs than others

i.e. buffer overflows versus race conditions



Generating Test Cases

Mutation-based approach

Take valid data and add anomalies

Only as good as the quality of valid data

Easy: requires no knowledge of protocol

Generation-based approach

Generate test cases from protocol specification

Hard: need to represent all possibilities of inputs



I Heard Fuzzing Is Useful...

Which fuzzer do I use?



Fuzzing Lifecycle

Identifying interfaces

Input generation

Sending inputs

Target monitoring

Exception analysis

Reporting

<-- This is all we test



How To Test Fuzzers?

Retrospective testing

Simulated vulnerability discovery

Code coverage analysis



Retrospective Testing

Time period is selected, say 6 months

All security bugs in the products under study that 
emerged during the testing period are identified

6 month old fuzzers are run against 6 month old 
products

We see if the “new” bugs are found



Retrospective Testing (Cont.)

Positives

Measures how well fuzzers find real bugs in real 
programs

Negatives

In good products, not many bugs come out in 6 
months

Small sample size - hard to draw conclusions

Old versions of fuzzers are being tested



Simulated Vulnerability 
Discovery

Experienced security researcher adds bugs to a 
product

Bugs should be representative of the types of bugs 
found in this product in the past

Each bug is verified to be reachable from an external 
interface

Another researcher uses fuzzers to try to find these 
“fake” bugs



Fake Bugs

Positives

Large sample size - add as many bugs as you want

The fuzzers still has to actually find the bugs

Negatives

Bugs aren’t “real” - depend on the prejudices of the 
person adding them



Code Coverage Analysis

Instrument the target application to measure the 
amount of code each fuzzer executes

Absolute numbers are meaningless, but relative 
numbers can be used

Lines not executed by a fuzzer indicate the fuzzer will 
not find bugs in those lines (if they exist)

Measure “opportunity” of finding bugs



Code Coverage

Positives

Easy to obtain

Negatives

Doesn’t actually measure “bug finding” ability

Measures what isn’t tested

Covered does not necessarily mean fuzzed

Think non-security regression tests



Our Testing

Three network protocols

Two servers, one client

A handful of fuzzers

Simulated vulnerability discovery and code coverage 
used



Caveats

In real life, choice of fuzzer will depend heavily on your 
particular project

Funding can be an issue - commercial fuzzers are 
expensive!

Fuzzing an obscure or proprietary protocol may limit 
your choices

This testing was only 3 protocols and relied heavily on 
the placement of the fake bugs - buyer beware



Introducing The Fuzzers

General Purpose Fuzzer (GPF)

The Art of Fuzzing (Taof)

ProxyFuzz

Mu-4000

Codenomicon

beSTORM

Application specific fuzzers: FTPfuzz, PROTOS



GPF

Open source

Mutation based (requires packet capture)

Parses packet capture and adds anomalies

Can do this automatically or with a custom written “tokAid”

Custom tokAids can take many hours to write

SuperGPF: a mode which modifies packet capture, adds 
anomalies, and launches many GPF instances

Only works for text based protocols



Taof

Open source, mutation based

GUI based

User dissects the captured packets and identifies 
length fields, etc.

Effort comparable to writing a GPF tokAid

Types of anomalies added are configurable

Currently cannot handle length fields within length fields

Limits effectiveness in many binary protocols



ProxyFuzz

Open source, mutation based

Sits in the middle of traffic and randomly injects 
anomalies into live traffic

Can set up and run in a matter of seconds

Completely protocol unaware



Mu-4000

Commercial fuzzer from Mu Security

Generation based

Understands 55+ protocols 

Easy to use

Can only fuzz protocols it knows

Can only fuzz servers

Sophisticated target monitoring



Codenomicon

Commercial, generation based fuzzer

Understands 130+ protocols

Can only fuzz these protocols

Fuzz client, server, and file parsing applications

Limited or no monitoring capabilities



beSTORM

Commercial, generation based fuzzer

Understands 50+ protocols

Can be used to fuzz arbitrary protocols

Configured through GUI

Sophisticated monitoring capabilities



Application Specific Fuzzers

FTPFuzz

GUI driven, open source, generation based

Only fuzzes FTP servers

PROTOS SNMP test suite

Generation based

Java command line application fires off SNMP 
packets

Found all those ASN.1 bugs a few years ago



What’s Missing?

What about SPIKE, Sulley, Peach, etc...

These are fuzzing frameworks, not fuzzers

Their effectiveness is based solely on the quality of the 
protocol description they are given

We wouldn’t be testing the frameworks, but the 
specification files

We’d have to write the protocol descriptions - I’m too 
lazy to do that!



Targets

FTP Server - ProFTPD

Uses common ASCII based protocol

SNMP Server - Net-SNMP

Uses binary based protocol

DNS client - dig from BIND

Uses binary based protocol



The Bugs
17 bugs added to each application - Thanks Jake 
Honoroff!

Half were buffer overflows

A fourth were format strings

A fourth were others types of issues: command 
injection, double free, wild writes, etc.

Not detectable with normal client (not THAT obvious)

Prefaced with logging code

Not necessarily “exploitable” - but probably



Example: FTP Bug #0

This is a format string bug because 
pr_response_add_err() expects a format string for the 
second argument

MODRET xfer_type(cmd_rec *cmd) {
...
    if (strstr(get_full_cmd(cmd), "%")!=NULL){
        BUGREPORT(0);
       }
    char tempbuf[32];
    snprintf(tempbuf, 32, "%s not understood", get_full_cmd(cmd));
    pr_response_add_err(R_500, tempbuf);



Results!



FTP
Bug 0 1 3 4 5 9 11 12 13 14 15 16

Random

GPF Partial X X  X

GPF Full X X  X X X

Super GPF X X  X X X X

Taof Partial

Taof Full X X X
ProxyFuzz Partial

ProxyFuzz Full X    X X
Mu-4000 X X  X X X

FTPfuzz X X  X X

Codenomicon X X X X X X



FTP - Summary

Random
GFP Partial

GPF Full
SuperGPF
Taof Partial

Taof Full
PF Partial

PF Full
Mu-4000

Codenomicon
FTPFuzz

0 10 20 30 40 50

% bugs found % code coverage



SNMP
Bug 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16

Random   

GPF Generic X X X  X  X X X

GPF SNMP X X X X  X X X X X    

ProxyFuzz X X  X X X X

Mu-4000 X X X X  X X X X X X  X X

PROTOS X X X X X X X

Codenomicon X X X X X X X X X X X X

beSTORM X X X X X X



SNMP Summary

Random

GPF Generic

GFP SNMP

ProxyFuzz

Mu-4000

PROTOS

Codenomicon

beSTORM

0 20 40 60 80

% bugs found % code coverage



DNS

Bug 0 1 2 3 4 5 7 8 11 12 13 14 15

GPF Random

GPF Generic     X X X X

ProxyFuzz X X X  X X X X X X

Codenomicon X X X X X X X X X X

beSTORM X



DNS Summary

Random

GPF Generic

ProxyFuzz

Codenomicon

beSTORM

0 15 30 45 60

% Bugs found % Code coverage



A Closer Look



FTP Oddities

Bugs 9, 12, and 13 were found by GPF but no other 
fuzzers

Bugs 14 and 16 were found by Taof and ProxyFuzz but 
no other fuzzers

Bugs 4, 5, and 15 were found by the generational 
based fuzzers, but not the mutation based ones



FTP Bug 9

Generation based fuzzers didn’t run SIZE verb - not in 
RFC

Likewise, other 2 bugs are in EPSV

MODRET core_size(cmd_rec *cmd) {
…
  if (!path || !dir_check(cmd->tmp_pool, cmd->argv[0], cmd->group, path, 
NULL) || pr_fsio_stat(path, &sbuf) == -1) {
 char tempbuf[64];
 if(strstr(cmd->arg, "%")){
  BUGREPORT(9);
 }
        strncpy(tempbuf, cmd->arg, 62);
        strncat(tempbuf, ": ", 64);
        strncat(tempbuf, strerror(errno), 64-strlen(tempbuf));
        pr_response_add_err(R_550, tempbuf);



FTP Bug 16
MODRET core_eprt(cmd_rec *cmd) {
  char delim = '\0', *argstr = pstrdup(cmd->tmp_pool, cmd->argv[1]);
…
  /* Format is <d>proto<d>ip address<d>port<d> (ASCII in network order),
   * where <d> is an arbitrary delimiter character.
   */
  delim = *argstr++;
…
  while (isdigit((unsigned char) *argstr))
    argstr++;
…
  if (*argstr == delim)
    argstr++;
…
  if ((tmp = strchr(argstr, delim)) == NULL) {
 char tempbuf[64];
 if(strstr(cmd->argv[1], "%")!=NULL){
  BUGREPORT(16);
 }
 snprintf(tempbuf, 64, "badly formatted EPRT argument: '%s'", cmd->argv[1]);
 pr_response_add_err(R_501, tempbuf);
    return ERROR(cmd);
  }



FTP Bug 16 (Cont.)
Need to not have enough delimiters

The data after the second one needs to have a format 
string specifier

Generation based fuzzers did not issue EPRT

GPF was not random enough



FTP Bug 4

Need a long path path that starts with a ‘~’.

char *dir_canonical_path(pool *p, const char *path) {
  char buf[PR_TUNABLE_PATH_MAX + 1]  = {'\0'};
  char work[256 + 1] = {'\0'};

  if (*path == '~') {
    if(strlen(path) > 256 + 1){
     BUGREPORT(4);
    }
    if (pr_fs_interpolate(path, work, strlen(path)) != 1) {
      if (pr_fs_dircat(work, sizeof(work), pr_fs_getcwd(), path) < 0)
        return NULL;
    }



FTP Bug 4 (Cont.)

Generation based fuzzers got this one

Mutation based did not - never began a path with a ‘~’



SNMP Bug #4
int snmp_pdu_parse(netsnmp_pdu *pdu, u_char * data, size_t * length)
{
…
    data = asn_parse_sequence(data, length, &type, (ASN_SEQUENCE | ASN_CONSTRUCTOR), 
"varbinds");
    if (data == NULL)
        return -1;
...
    while ((int) *length > 0) {
…
        switch ((short) vp->type) {
…
        case ASN_OCTET_STR:
        case ASN_IPADDRESS:
        case ASN_OPAQUE:
        case ASN_NSAP:
            if (vp->val_len < sizeof(vp->buf)) {
                vp->val.string = (u_char *) vp->buf;
            } else {
                vp->val.string = (u_char *) malloc(200);
        if (vp->val_len > 200)
         {

      BUGREPORT(4);
   }

           }
…
            asn_parse_string(var_val, &len, &vp->type, vp->val.string,
                             &vp->val_len);
     break;



SNMP Bug #4 (Cont.)
Bug is reached with a particular type of packet and a 
large length and corresponding long string

GPF executes the function but doesn’t even make it to 
the switch statement (i.e. its too random)

ProxyFuzz and Mu-4000 sent the right kind of packet, 
but not with a long enough string



General 
Conclusions



The More Fuzzers The Better

FTP

SNMP

DNS

0 3 6 9 12 15

# bugs found: all fuzzers # bugs found: best fuzzer



Generation Based Approach 
Most Effective

FTP

SNMP

DNS

0 2 4 6 8 10 12

# bugs found: mutation based # bugs found: generation based



Initial Test Cases Important

GPF

Taof

ProxyFuzz

0 1 2 3 4 5

# FTP bugs found - partial capture # FTP bugs found - full capture



Protocol Knowledge Is Good

ProxyFuzz

GPF Generic

GPF w/tokAid

Mu/Code.

0 10 20 30 40 50 60 70 80

% SNMP bugs found



Does Code Coverage 
Predict Bug Finding?



More Code Coverage...



More Code Coverage...



Statistics Says “Yes”
Dep Var: BUGS   N: 11   Multiple R: 0.716   Squared multiple R: 0.512
 
Adjusted squared multiple R: 0.458   Standard error of estimate: 9.468
 
Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
 
CONSTANT            -5.552        8.080        0.000      .      -0.687    0.509
CC                   0.921        0.300        0.716     1.000    3.074    0.013
 
                             Analysis of Variance
 
Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
 
Regression               847.043     1      847.043       9.449       0.013
Residual                 806.813     9       89.646

A 1% increase in code coverage increases the 
percentage of bugs found by .92%



How Long To Run Fuzzers?

0

100

200

300

400

1 2 3 4 5 6 7 8 9

Time to discovery in minutes, ProxyFuzz versus DNS



A Real Bug

All this fuzzing with different fuzzers against a real 
program might have actually found a real bug

It is possible that some were found but were lost in the 
“noise”

One Net-SNMP bug was found (DOS)

Only found by Codenomicon

Reported and fixed



Conclusions
Verified a lot of what intuition tells us

Incorporate as much protocol specific knowledge as 
possible

Commercial fuzzers are good (if you can afford them)

Multiple fuzzers are better than one

Run fuzzers for a very long time (longer than you’d 
think)

Code coverage in fuzzers is useful as a measurement



Special Thanks To:

Commercial fuzzer vendors who let me use their 
product - very cool!

Open source fuzzer developers who helped me find/fix 
bugs in their fuzzers



Questions?

Buggy programs will be made available

Contact me at: cmiller@securityevaluators.com


