
© 2005, Independent Security Evaluators
www.securityevaluators.com

How Smart is Intelligent Fuzzing -
or - How Stupid is Dumb Fuzzing?

Charles Miller
Independent Security Evaluators

August 3, 2007

cmiller@securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Agenda

▪ Introduction

▪ Portable Network Graphics

▪ libpng

▪ Mutation vs Generation Based Fuzzing

▪ Conclusions

© 2005, Independent Security Evaluators
www.securityevaluators.com

Introduction

▪ “Intelligent fuzzing usually gives more
results” - Ilja van Sprundel

▪ Can we quantify this statement?

▪ How important is the choice of inputs for
mutation-based fuzzing?

© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzzing

▪ Generate test cases - files, network traffic,
command line arguments, environment
variables, etc.

▪ Test cases should be “close” to real program
inputs but should contain anomalies

▪ Test cases fed into the target application
which is monitored for faults

▪ These anomalies are meant to defy
programmer assumptions and find bugs

© 2005, Independent Security Evaluators
www.securityevaluators.com

How to Get the Test Cases

▪ Mutate existing inputs (dumb fuzzing)
§ Take a valid input, say a file, and make

changes to it
§ These changes can include modifying bytes,

adding strings, %n’s, etc.
§ Easy and fast to do
§ Doesn’t require knowledge of the program or

protocol
§ Dependent on the existing inputs

© 2005, Independent Security Evaluators
www.securityevaluators.com

How to Get the Test Cases (Cont)

▪ Generate inputs from protocol
description(Intelligent fuzzing)
§ Start from RFC or documentation

§ Generate inputs based on documentation

§ For each field in the description, add an anomaly,
such as a long strings, negative numbers, %n’s etc

§ Takes a long time to create the inputs

§ Tedious work

§ Requires complete knowledge or program or protocol

§ Since all possible fields are fuzzed, should be more
thorough

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

PNG Specification

▪ 8 byte signature followed by “chunks”

▪ Each chunk has
§ 4 byte length field
§ 4 byte type field
§ optional data

§ 4 byte CRC checksum

▪ 18 chunk types, 3 of which are mandatory

▪ Additional types are defined in extensions to
the specification (I look at 21 types; the
number known by libpng)

© 2005, Independent Security Evaluators
www.securityevaluators.com

Sample PNG File

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

PNG’s From the Wild

▪ Collected 1631 unique PNG files from the
Internet

▪ Each file was processed and the chunk
types present in each was recorded

▪ Typically, very few chunk types were
present

Number of
files

Mean number
of chunk types

Standard
deviation

Maximum Minimum

1631 4.9 1.3 9 3

© 2005, Independent Security Evaluators
www.securityevaluators.com

Distribution of Chunks Found

0%

25%

50%

75%

100%

IHDR
PLT

E
tRNS

cH
RM

gA
MA

iCCP
IDAT

sB
IT

sR
GB

tEXt
zT

Xt
iTXt

bK
GD

hIS
T

pH
Ys

sP
LT tIM

E
oF

Fs
pC

AL
sC

AL
IEND

100%

1%
8%

34%

10%
4%

19%
13%

3%

100%

5%

34%

19%
11%

32%

100%

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Observations

▪ On average, only five of the chunk types
are present in a random file!

▪ 9 of the 21 types occurred in less than 5%
of files

▪ 4 of the chunk types never occurred

▪ Mutation based fuzzers will typically only
test the code from these five chunks

▪ They will never fuzz the code in chunks
which are not present in the original input

© 2005, Independent Security Evaluators
www.securityevaluators.com

libpng

▪ libpng is an open source PNG decoder

▪ Used in Firefox, Opera, and Safari

▪ We want to check that each chunk type
really has unique processing code

▪ We generate PNG’s containing the 3
mandatory and then one more chunk type

▪ We use gcov to record code coverage
while it processes fuzzed versions of this
type (approximately 1000 files per type)

© 2005, Independent Security Evaluators
www.securityevaluators.com

Code Coverage for Each Chunk Type

0%

12.5%

25.0%

37.5%

50.0%

PLT
E

tRNS
cH

RM
gA

MA
iCCP

sB
IT

sR
GB

tEXt
zT

Xt
iTXt

bK
GD

hIS
T

pH
Ys

sP
LT tIM

E
oF

Fs
pC

AL
sC

AL

15%

25%

9%

14%

27%
25%24%

29%

10%

33%

24%

50%

20%21%

44%45%
48%

13%

Number of lines of code required to process each type as a percentage of
the total number of lines required to process a minimal PNG file

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

So...

▪ Some chunk types require more code than
others for processing

▪ The 4 chunk types which were not found in
the wild represent 76% more code than a
minimal PNG.

▪ This code will not be fuzzed using a
mutation based method

© 2005, Independent Security Evaluators
www.securityevaluators.com

Mutation vs Generation Based Fuzzing

▪ Generation based fuzzing is better... but
how much better?

▪ How much does mutation based fuzzing
depend on the input being mutated?

▪ We examine the case for PNG and libpng

© 2005, Independent Security Evaluators
www.securityevaluators.com

Experiment 1

▪ We ran a mutation based fuzzer (similar to
FILEfuzz) starting from 3 PNG’s.
§ 5 chunk types (most likely to be used by

chance)
§ 7 chunk types (unlikely to be used by chance)
§ 9 chunk types (extremely unlikely)

▪ For each file, we tested the application
with 100,000 test cases.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Experiment 2

▪ The existence of the CRC’s may
completely hinder the mutation-based
fuzzer.

▪ We used the same starting file and same
fuzzer as experiment 1.

▪ We ensured that the CRC’s were all
corrected before testing the application.

▪ Again used 100,000 test cases.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Experiment 3

▪ Used SPIKEfile and the PNG specification
to generate fuzzed PNG’s.

▪ Fuzzed all 21 chunk types as well as the
length, CRC, and chunk name fields.

▪ Generated 29,511 test files.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Results

0%

75%

150%

225%

300%

Mut
5

Mut
7

Mut
9

Mut
CRC 5

Mut
CRC 7

Mut
CRC 9

Gen

289%

150%
137%

85%

139%

98%

60%

Number of lines executed as a percentage of code required to fuzz a minimal
PNG file

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Conclusions

▪ Mutation based fuzzing is very dependent on the
inputs being mutated.

▪ Choosing the right inputs can double the amount of
code executed with mutation based fuzzing.

▪ Generation based fuzzing is substantially better in
this case

▪ In this case, 2-5 times more code may be executed
using generation based fuzzing over mutation
based.

▪ All this is specific to the fuzzers used and this
specific filetype.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Does This Generalize?

▪ Who knows?

▪ Related information
§ In “Fuzzing: Brute Force Vulnerability Discovery“, they

examined 10,000 SWF files

SWF Version % of Total

Flash 8 < 1%

Flash 7 2%

Flash 6 11%

Flash 5 55%

Flash 4 28%

Flash 1-3 3%

© 2005, Independent Security Evaluators
www.securityevaluators.com

Questions?

▪ Please contact me at:
cmiller@securityevaluators.com

mailto:cmiller@securityevaulators.com
mailto:cmiller@securityevaulators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

