How Smart is Intelligent Fuzzing -

or - How Stupid is Dumb Fuzzing?

Charles Miller
Independent Security Evaluators
August 3, 2007

cmiller@securityevaluators.com

© 2005, Independent Security Evaluators <[=
wwWw.securityevaluators.com -

= Introduction

= Portable Network Graphics

= libpng

= Mutation vs Generation Based Fuzzing
= Conclusions

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Introduction

= “Intelligent fuzzing usually gives more
results” - llja van Sprundel

= Can we quantify this statement?

= How important is the choice of inputs for
mutation-based fuzzing?

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Generate test cases - files, network traffic,
command line arguments, environment
variables, etc.

= Test cases should be “close” to real program
iInputs but should contain anomalies

= Test cases fed into the target application
which is monitored for faults

= These anomalies are meant to defy
programmer assumptions and find bugs

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

How to Get the Test Cases

= Mutate existing inputs (dumb fuzzing)

§ Take a valid input, say a file, and make
changes to it

§ These changes can include modifying bytes,
adding strings, %n’s, etc.

§ Easy and fast to do

§ Doesn’t require knowledge of the program or
protocol

§ Dependent on the existing inputs

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

How to Get the Test Cases (Cont)

= Generate inputs from protocol
description(/ntelligent fuzzing)

§ Start from RFC or documentation
§ Generate inputs based on documentation

§ For each field in the description, add an anomaly,
such as a long strings, negative numbers, %n’s etc

§ Takes a long time to create the inputs
§ Tedious work
§ Requires complete knowledge or program or protocol

§ Since all possible fields are fuzzed, should be more
thorough

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

PNG Specification

= 8 byte signature followed by “chunks”

= Each chunk has
§ 4 byte length field
§ 4 byte type field
§ optional data
§ 4 byte CRC checksum

= 18 chunk types, 3 of which are mandatory

= Additional types are defined in extensions to
the specification (I look at 21 types; the
number known by libpng)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Sample PNG File

e 06 VisFuzz

File Edit Specification Help

stpatrick.png |

50 4E 47 0D 0A 1A OA 00 00 00 0D 49 48 44 52 [FPNG,, ,,,,,IHDR
00 00 14 00 00 00 14 08 03 00 00 00 A4 9E DD -
00000020 3C 00 00 02 FD 50 4C 54 45 00 00 00 36 B7 24 FF ___.. -
00000030 FF FF EE 12 12 4A 4A 4A FF BO 12 EE EE 12 1F 3F ___. . J37_ ?
00000040 Cco A0 AD A0 4F 6F DF CC CC CC BO BO BO 1C 75 1D 00, iieee
00000050 24 24 24 32 CB FE A2 09 0A 11 11 11 12 12 12 13 §§§2_ o000
00000060 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18

00000070 15 19 19 19 1A 1A 1A 1B 1B 1B AC 1C 1C 1D 1D 1D
00000080 1F 1E 1E 1F 1F 1F 20 20 20 21 21 21 22 22 22 23 Pppmney
00000090 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 ##3PP¥u%88" "' ((
000000A0 25 29 29 29 24 2A 24 2B 2B 2B 2C 2C 2C 2D 2D 2D ()))kkkeds ——o
000000BO 2E 2E 2E 2F 2F 2F 30 30 30 31 31 31 32 32 32 33 ...///0001112223
000000CD 33 33 34 34 34 35 35 35 36 36 36 37 37 37 38 38 3344455566677788
000000D0 35 39 39 39 34 34 34 3B 3B 3B 3C 3C 3C 3D 3D 3D 8999 ::;;;<<<===
000000ED 3E 3E 3E 3F 3F 3F 40 40 40 41 41 41 42 42 42 43 >>>?77@@@AAABBBC|
D00000FD 43 43 44 44 44 45 45 45 46 46 46 47 47 47 48 48 CCDDDEEEFFFGGGHH| "

[r

ses ogaeaseseg

Description] Yalue

(= Specification
~[] PNG header {89 50 4E 47 0D 0A 1A 0,89 50 4E 47 0D 0A 1A 0A -8552249625...
== Chunks

© = _HDRchunk
] Block size 00 00 00 0D; 13
#-(3 IHDR CRC block
-] IHDR crc {correct) A4 9E DD 8C; 1931632988

-3 Palette Chunk

#-(3 Background Color Chunk

#-(3 Physical Pixel Dimension Chunk
#-3 Image Last-modification time chunk
#-(3 Image Data Chunk [0]

#-3 Image Trailer Chunk

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

PNG’'s From the Wild

= Collected 1631 unique PNG files from the
Internet

= Each file was processed and the chunk
types present in each was recorded

= Typically, very few chunk types were

present
Number of Mean number Standard Maximum Minimum
files of chunk types deviation
1631 4.9 1.3 9 3

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Distribution of Chunks Found

100%

75%

50%

25%

0%

1C)C) 1CIC)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

= On average, only five of the chunk types
are present in a random file!

= 9 of the 21 types occurred in less than 5%
of files

= 4 of the chunk types never occurred

= Mutation based fuzzers will typically only
test the code from these five chunks

= They will never fuzz the code in chunks
which are not present in the original input

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= libpng is an open source PNG decoder
= Used in Firefox, Opera, and Safari

= WWe want to check that each chunk type
really has unigue processing code

= \We generate PNG's containing the 3
mandatory and then one more chunk type

= We use gcov to record code coverage
while it processes fuzzed versions of this
type (approximately 1000 files per type)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Code Coverage for Each Chunk Type

50.0% T S O
!'%J ;l';l
37.5%
29
25.0% T l “/% /O .‘/‘_E % 23 p
= 20)
: | 41 |9
125% . u)
0%
Q\/,g%&@q@.@&gg,g,{\/\o{g&&g‘%@o&&v

Number of lines of code required to process each type as a percentage of
the total number of lines required to process a minimal PNG file

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

= Some chunk types require more code than
others for processing

= The 4 chunk types which were not found in
the wild represent 76% more code than a
minimal PNG.

= This code will not be fuzzed using a
mutation based method

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Mutation vs Generation Based Fuzzing

= Generation based fuzzing is better... but

how much better?

= How much does mutation based fuzzin
depend on the input being mutated?

g

= \We examine the case for PNG and libpng

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

lYs|

= We ran a mutation based fuzzer (similar to
FILEfuzz) starting from 3 PNG's.

§ 5 chunk types (most likely to be used by
chance)

§ 7 chunk types (unlikely to be used by chance)
§ 9 chunk types (extremely unlikely)

= For each file, we tested the application
with 100,000 test cases.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= The existence of the CRC’s may
completely hinder the mutation-based
fuzzer.

= \We used the same starting file and same
fuzzer as experiment 1.

= We ensured that the CRC’s were all
corrected before testing the application.

= Again used 100,000 test cases.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Used SPIKEfile and the PNG specification
to generate fuzzed PNG's.

= Fuzzed all 21 chunk types as well as the
length, CRC, and chunk name fields.

= Generated 29,511 test files.

© 2005, Independent Security Evaluators

WwWw.securityevaluators.com

300% T P OITN

225%

150% 1 | 851 =/ b A

75%

0%

Number of lines executed as a percentage of code required to fuzz a minimal
PNG file

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

Mutation based fuzzing is very dependent on the
iInputs being mutated.

Choosing the right inputs can double the amount of
code executed with mutation based fuzzing.

Generation based fuzzing is substantially better in
this case

In this case, 2-5 times more code may be executed
using generation based fuzzing over mutation
based.

All this is specific to the fuzzers used and this
specific filetype.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Does This Generalize?

= Who knows?

= Related information

§ In “Fuzzing: Brute Force Vulnerability Discovery”, they
examined 10,000 SWF files

SWF Version % of Total
Flash 8 <1%
Flash 7 2%
Flash 6 11%
Flash 5 55%
Flash 4 28%
Flash 1-3 3%

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Please contact me at:
cmiller@securityevaluators.com

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

mailto:cmiller@securityevaulators.com
mailto:cmiller@securityevaulators.com

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

