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Introduction

▪ “Intelligent fuzzing usually gives more 
results” - Ilja van Sprundel

▪ Can we quantify this statement?

▪ How important is the choice of inputs for 
mutation-based fuzzing?
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Fuzzing

▪ Generate test cases - files, network traffic, 
command line arguments, environment 
variables, etc.

▪ Test cases should be “close” to real program 
inputs but should contain anomalies

▪ Test cases fed into the target application 
which is monitored for faults

▪ These anomalies are meant to defy 
programmer assumptions and find bugs
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How to Get the Test Cases

▪ Mutate existing inputs (dumb fuzzing)
§ Take a valid input, say a file, and make 

changes to it
§ These changes can include modifying bytes, 

adding strings, %n’s, etc.
§ Easy and fast to do
§ Doesn’t require knowledge of the program or 

protocol
§ Dependent on the existing inputs
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How to Get the Test Cases (Cont)

▪ Generate inputs from protocol 
description(Intelligent fuzzing)
§ Start from RFC or documentation

§ Generate inputs based on documentation

§ For each field in the description, add an anomaly, 
such as a long strings, negative numbers, %n’s etc

§ Takes a long time to create the inputs

§ Tedious work

§ Requires complete knowledge or program or protocol

§ Since all possible fields are fuzzed, should be more 
thorough

http://www.securityevaluators.com
http://www.securityevaluators.com
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PNG Specification

▪ 8 byte signature followed by “chunks”

▪ Each chunk has
§ 4 byte length field
§ 4 byte type field
§ optional data

§ 4 byte CRC checksum

▪ 18 chunk types, 3 of which are mandatory

▪ Additional types are defined in extensions to 
the specification (I look at 21 types; the 
number known by libpng)
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Sample PNG File

http://www.securityevaluators.com
http://www.securityevaluators.com
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PNG’s From the Wild

▪ Collected 1631 unique PNG files from the 
Internet

▪ Each file was processed and the chunk 
types present in each was recorded

▪ Typically, very few chunk types were 
present

Number of 
files

Mean number 
of chunk types

Standard 
deviation

Maximum Minimum

1631 4.9 1.3 9 3
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Distribution of Chunks Found
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Observations

▪ On average, only five of the chunk types 
are present in a random file!

▪ 9 of the 21 types occurred in less than 5% 
of files

▪ 4 of the chunk types never occurred

▪ Mutation based fuzzers will typically only 
test the code from these five chunks

▪ They will never fuzz the code in chunks 
which are not present in the original input
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libpng

▪ libpng is an open source PNG decoder

▪ Used in Firefox, Opera, and Safari

▪ We want to check that each chunk type 
really has unique processing code

▪ We generate PNG’s containing the 3 
mandatory and then one more chunk type 

▪ We use gcov to record code coverage 
while it processes fuzzed versions of this 
type (approximately 1000 files per type)
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Code Coverage for Each Chunk Type
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So...

▪ Some chunk types require more code than 
others for processing

▪ The 4 chunk types which were not found in 
the wild represent 76% more code than a 
minimal PNG.

▪ This code will not be fuzzed using a 
mutation based method
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Mutation vs Generation Based Fuzzing

▪ Generation based fuzzing is better... but 
how much better?

▪ How much does mutation based fuzzing 
depend on the input being mutated?

▪ We examine the case for PNG and libpng
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Experiment 1

▪ We ran a mutation based fuzzer (similar to 
FILEfuzz) starting from 3 PNG’s.
§ 5 chunk types (most likely to be used by 

chance)
§ 7 chunk types (unlikely to be used by chance)
§ 9 chunk types (extremely unlikely)

▪ For each file, we tested the application 
with 100,000 test cases.



© 2005, Independent Security Evaluators 
www.securityevaluators.com

Experiment 2

▪ The existence of the CRC’s may 
completely hinder the mutation-based 
fuzzer.

▪ We used the same starting file and same 
fuzzer as experiment 1.

▪ We ensured that the CRC’s were all 
corrected before testing the application.

▪ Again used 100,000 test cases.
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Experiment 3

▪ Used SPIKEfile and the PNG specification 
to generate fuzzed PNG’s.

▪ Fuzzed all 21 chunk types as well as the 
length, CRC, and chunk name fields.

▪ Generated 29,511 test files.
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Results
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Conclusions

▪ Mutation based fuzzing is very dependent on the 
inputs being mutated.  

▪ Choosing the right inputs can double the amount of 
code executed with mutation based fuzzing.

▪ Generation based fuzzing is substantially better in 
this case

▪ In this case, 2-5 times more code may be executed 
using generation based fuzzing over mutation 
based.

▪ All this is specific to the fuzzers used and this 
specific filetype.  
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Does This Generalize?

▪ Who knows?

▪ Related information
§ In “Fuzzing: Brute Force Vulnerability Discovery“, they 

examined 10,000 SWF files

SWF Version % of Total

Flash 8 < 1%

Flash 7 2%

Flash 6 11%

Flash 5 55%

Flash 4 28%

Flash 1-3 3%
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Questions?

▪ Please contact me at: 
cmiller@securityevaluators.com

mailto:cmiller@securityevaulators.com
mailto:cmiller@securityevaulators.com
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