
© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzzing with Code Coverage
By Example

Charlie Miller

Independent Security Evaluators

October 20, 2007

cmiller@securityevaluators.com

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Agenda

▪ Fuzzing 101

▪ Common Fuzzing Problems

▪ Code Coverage

▪ Examples

▪ Improving Code Coverage

© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzzing

▪ A form of vulnerability analysis and testing

▪ Many slightly anomalous test cases are
input into the target application

▪ Application is monitored for any sign of
error

© 2005, Independent Security Evaluators
www.securityevaluators.com

Example

▪ Standard HTTP GET request
§ GET /index.html HTTP/1.1

▪ Anomalous requests
§ AAAAAA...AAAA /index.html HTTP/1.1
§ GET ///////index.html HTTP/1.1

§ GET %n%n%n%n%n%n.html HTTP/1.1
§ GET /AAAAAAAAAAAAA.html HTTP/1.1

§ GET /index.html HTTTTTTTTTTTTTP/1.1
§ GET /index.html HTTP/1.1.1.1.1.1.1.1
§ etc...

© 2005, Independent Security Evaluators
www.securityevaluators.com

Different Ways To Fuzz

▪ Mutation Based - “Dumb Fuzzing”

▪ Generation Based - “Smart Fuzzing”

▪ Evolutionary

© 2005, Independent Security Evaluators
www.securityevaluators.com

Mutation Based Fuzzing

▪ Little or no knowledge of the structure of the inputs is
assumed

▪ Anomalies are added to existing valid inputs

▪ Anomalies may be completely random or follow some
heuristics

▪ Requires little to no set up time

▪ Dependent on the inputs being modified

▪ May fail for protocols with checksums, those which
depend on challenge response, etc.

▪ Examples:
§ Taof, GPF, ProxyFuzz, etc.

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Generation Based Fuzzing

▪ Test cases are generated from some
description of the format: RFC, documentation,
etc.

▪ Anomalies are added to each possible spot in
the inputs

▪ Knowledge of protocol should give better
results than random fuzzing

▪ Can take significant time to set up

▪ Examples
§ SPIKE, Sulley, Mu-4000, Codenomicon

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Evolutionary Fuzzing

▪ Attempts to generate inputs based on the
response of the program

▪ Autodafe
§ Prioritizes test cases based on which inputs

have reached dangerous API functions

▪ EFS
§ Generates test cases based on code

coverage metrics (more later)

▪ This technique is still in the alpha stage :)

© 2005, Independent Security Evaluators
www.securityevaluators.com

The Problems With Fuzzing

▪ Mutation based fuzzers can generate an
infinite number of test cases... When has
the fuzzer run long enough?

▪ Generation based fuzzers generate a finite
number of test cases. What happens when
they’re all run and no bugs are found?

▪ How do you monitor the target application
such that you know when something “bad”
has happened?

© 2005, Independent Security Evaluators
www.securityevaluators.com

The Problems With Fuzzing

▪ What happens when you find too many bugs?
Or every anomalous test case triggers the same
(boring) bug?

▪ How do you figure out which test case caused
the fault?

▪ Given a crash, how do you find the actual
vulnerability

▪ After fuzzing, how do you know what changes to
make to improve your fuzzer?

▪ When do you give up on fuzzing an application?

© 2005, Independent Security Evaluators
www.securityevaluators.com

Example 1: PDF

▪ Have a PDF file with 248,000 bytes

▪ There is one byte that, if changed to particular
values, causes a crash
§ This byte is 94% of the way through the file

▪ Any single random mutation to the file has a
probability of .00000392 of finding the crash

▪ On average, need 127,512 test cases to find it

▪ At 2 seconds a test case, thats just under 3
days...

▪ It could take a week or more...

© 2005, Independent Security Evaluators
www.securityevaluators.com

Example 2: 3g2

▪ Video file format

▪ Changing a byte in the file to 0xff crashes
QuickTime Player 42% of the time

▪ All these crashes seem to be from the
same bug

▪ There may be other bugs “hidden” by this
bug

© 2005, Independent Security Evaluators
www.securityevaluators.com

Code Coverage

▪ Some of the answers to these questions
lie in code coverage

▪ Code coverage is a metric which can be
used to determine how much code has
been executed.

▪ Works for source code or binaries,
although almost all the literature assumes
you have source

© 2005, Independent Security Evaluators
www.securityevaluators.com

Line Coverage

▪ Measures how many lines of code (source
code lines or assembly instructions) have
been executed.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Branch Coverage

▪ Measures how many branches in code
have been taken (conditional jmps)

▪ The above code can achieve full line
coverage in one test case (ex. x=3)

▪ Requires 2 test cases for total branch
coverage (ex. x=1, x=2).

if(x > 2)
x = 2;

http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Path Coverage

▪ Measures the number of paths executed

▪ Requires
§ 1 test case for line coverage
§ 2 test cases for branch coverage
§ 4 test cases for path coverage

• i.e. (a,b) = {(0,0), (3,0), (0,3), (3,3)}

if(a > 2)
a = 2;

if(b > 2)
b = 2;

© 2005, Independent Security Evaluators
www.securityevaluators.com

Path Coverage Issues

▪ In general, a program with n “reachable” branches will
require 2n test cases for branch coverage and 2^n test
cases for path coverage
§ Umm....there’s a lot of paths in a program!

▪ If you consider loops, there are an infinite number of paths

▪ Some paths are infeasible

§ You can’t satisfy both of these conditionals, i.e. there is
only three paths through this code, not four

if(x>2)
x=2;

if(x<0)
x=0;

© 2005, Independent Security Evaluators
www.securityevaluators.com

Getting Code Coverage Data

▪ If you’ve got source
§ Instrument the code while compiling

• gcov

• Insure++
• Bullseye

© 2005, Independent Security Evaluators
www.securityevaluators.com

Getting Code Coverage Data

▪ If you live in the real world
§ Use Debugging info

• Pai Mei

§ Virtualization
• Valgrind

• Bochs
• Xen?

§ Dynamic code instrumentation
• DynamoRIO

• Aprobe

© 2005, Independent Security Evaluators
www.securityevaluators.com

Problems with Code Coverage

▪ Code can be covered without revealing bugs

▪ Error checking code mostly missed (and we don’t
particularly care about it)

▪ Only “attack surface” reachable
§ i.e. the code processing user controlled data

§ No easy way to measure the attack surface

mySafeCpy(char *dst, char* src){
 if(dst && src)
 strcpy(dst, src);
}

 ptr = malloc(sizeof(blah));
 if(!ptr)
 ran_out_of_memory();

© 2005, Independent Security Evaluators
www.securityevaluators.com

Now the Examples

▪ Note: we start with some source code
examples but move on to binary only

© 2005, Independent Security Evaluators
www.securityevaluators.com

In June 2007...

▪ A group of cunning, good looking
researchers hacked the iPhone

▪ How’d we find the bug?

▪ Fuzzing + Code Coverage!

© 2005, Independent Security Evaluators
www.securityevaluators.com

WebKit

▪ Most Apple Internet applications share the
same code, WebKit

▪ WebKit is an open source library

▪ Source code is available via svn:
§ svn checkout http://svn.webkit.org/repository/

webkit/trunk WebKit

http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk

© 2005, Independent Security Evaluators
www.securityevaluators.com

Thanks

▪ From the development site:

▪ So we know what they use for unit testing

▪ Let’s use code coverage to see which
portions of code might not be as well
tested

© 2005, Independent Security Evaluators
www.securityevaluators.com

lcov

▪ One problem with gcov is the data is
stored in many different files

▪ lcov is an open source software package
which collects data from a whole project
and displays it in a nice html report

▪ It can be a minor pain in the ass to get to
work...

© 2005, Independent Security Evaluators
www.securityevaluators.com

Build and Run WebKit

▪ Build it:

▪ Run the test suite:

▪ Add a bunch of stupid links for lcov...sigh :(

▪ Collect coverage data

▪ Generate HTML report

WebKit/WebKitTools/Scripts/build-webkit -coverage

lcov --directory WebKitBuild/JavaScriptCore.build/Release/
JavaScriptCore.build/Objects-normal/i386 -c -o testsuite.info

WebKitTools/Scripts/run-javascriptcore-tests -coverage

genhtml -o WebKit-html -f testsuite.info

© 2005, Independent Security Evaluators
www.securityevaluators.com

Results

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Results

▪ 59.3% of 13622 lines in JavaScriptCore
were covered
§ The main engine (53% of the overall code)

had 79.3% of its lines covered
§ Perl Compatible Regular Expression (PCRE)

library (17% of the overall code) had 54.7% of
its lines covered

▪ We decided to investigate PCRE further

© 2005, Independent Security Evaluators
www.securityevaluators.com

...The Rest of the Story

▪ Wrote a PCRE fuzzer (20 lines of perl)

▪ Ran it on a standalone PCRE parser
(pcredemo from the PCRE library)

▪ We started getting errors like:

▪ This was good

PCRE compilation failed at offset 6: internal error: code overflow.

© 2005, Independent Security Evaluators
www.securityevaluators.com

A Short Digression on iPhone Hacking:
- or - How To Write an Exploit by Fuzzing

▪ Using our evil regular expression, we
could crash mobileSafari (which uses
Webkit)

▪ We didn’t have a debugger for the iPhone.

▪ We couldn’t compile code for the iPhone

▪ We did have crash reports which gave
register values

▪ We did have core dumps (after some
iPhone modifications)

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

All Exploits Need...

▪ To get control (in this case pc = r15)

▪ To find your shellcode

▪ Q: How can you do this without a debugger?

▪ A: The same way you find bugs while
watching TV: fuzzing

© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzz to Exploit

▪ We generated hundreds of regular
expressions containing different number of
“evil” strings: “[[**]]”

▪ Sorted through the crash reports

▪ Eventually found a good one

© 2005, Independent Security Evaluators
www.securityevaluators.com

A “Good” Crash

Thread 2 crashed with ARM Thread State:
r0: 0x00065000 r1: 0x0084f800 r2: 0x00000017 r3: 0x15621561
r4: 0x00000018 r5: 0x0084ee00 r6: 0x00065000 r7: 0x005523ac
r8: 0x0000afaf r9: 0x00817a00 r10: 0x00ff8000 r11: 0x00000005
ip: 0x15641563 sp: 0x00552358 lr: 0x30003d70 pc: 0x3008cbc4
cpsr: 0x20000010 instr: 0xe583c004

__text:3008CBC4 STR R12, [R3,#4]
__text:3008CBC8 BXEQ LR
__text:3008CBCC
__text:3008CBCC loc_3008CBCC ; CODE XREF: __text:3008CBA0j
__text:3008CBCC STR R3, [R12]

▪ Unlinking of a linked list

▪ r3 and r12=ip are controllable

▪ Old school heap overflow (gotta love Apple)

▪ Gives us a “write anywhere” primitive

▪ Hows it work? Who the hell knows!

▪ HD Moore, who is an exploit writing genius, would be sad :(

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

More Fuzzing For Exploitation

▪ We decided to overwrite a return address
on the stack.

▪ How do you find it? Fuzz!
§ True fuzzing folks will call this brute forcing

and not fuzzing, but either way its easy...
Exception Type: EXC_BAD_INSTRUCTION
...
Thread 2 crashed with ARM Thread State:
 r0: 0x00065038 r1: 0x00000000 r2: 0x00000a00 r3: 0x00000001
 r4: 0x00065000 r5: 0x380135a4 r6: 0x00000000 r7: 0x005523e4
 r8: 0x00000000 r9: 0x00815a00 r10: 0x0084b800 r11: 0x00000000
 ip: 0x380075fc sp: 0x005523d0 lr: 0x30003e18 pc: 0x0055ff3c
 cpsr: 0x20000010 instr: 0xffffffff

© 2005, Independent Security Evaluators
www.securityevaluators.com

PNG - with source

▪ libpng-1.2.16

▪ Used in Firefox, Safari, and Thunderbird
(and others)

▪ http://www.libpng.org/pub/png/libpng.html

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html

© 2005, Independent Security Evaluators
www.securityevaluators.com

Build the Source

▪ ./configure CFLAGS="-g -fprofile-arcs -ftest-coverage"

▪ make (errors out)

▪ gcc -g -fprofile-arcs -ftest-coverage -I. -L/usr/X11R6/
lib/ -I/usr/X11R6/include contrib/gregbook/rpng-
x.c .libs/libpng12_la-png.o .libs/libpng12_la-
pngset.o .libs/libpng12_la-pngget.o .libs/libpng12_la-
pngrutil.o .libs/libpng12_la-pngtrans.o .libs/
libpng12_la-pngwutil.o .libs/libpng12_la-
pngread.o .libs/libpng12_la-pngrio.o .libs/libpng12_la-
pngwio.o .libs/libpng12_la-pngwrite.o .libs/libpng12_la-
pngrtran.o .libs/libpng12_la-pngwtran.o .libs/
libpng12_la-pngmem.o .libs/libpng12_la-pngerror.o .libs/
libpng12_la-pngpread.o .libs/libpng12_la-pnggccrd.o
contrib/gregbook/readpng.c -o contrib/gregbook/rpng-x
-lX11 -lz -lgcov

▪ result: contrib/gregbook/rpng-x

© 2005, Independent Security Evaluators
www.securityevaluators.com

How ‘bout a Little Dumb Fuzzing Action?

▪ Grab a PNG off the Internet
§ The first one I find is from Wikipedia:

PNG_transparency_demonstration_1.png

▪ Zero out any code coverage data
§ lcov --directory . -z

© 2005, Independent Security Evaluators
www.securityevaluators.com

Generate Some Files

▪ Use fuzz.c, the “super” fuzzer
§ Changes 1-17 bytes in each file
§ New value is random
§ Does this 8192 times

▪ The ultimate in dumb fuzzer technology

./fuzz > fuzz.out

© 2005, Independent Security Evaluators
www.securityevaluators.com

Use the Files

▪ Use script.sh
§ Executes the program 10 at a time
§ Sleeps 5 seconds
§ Kills any processes
§ Repeats
§ Monitors CrashReporter log for crashes

© 2005, Independent Security Evaluators
www.securityevaluators.com

Get Code Coverage

▪ We covered 10.7% of the lines

▪ This compares to
§ 0.4% for getting the usage statement
§ 745 of 7399 (10.1%) for opening the good file

• 43 more lines covered by fuzzing...

cp *.c .libs/
lcov --directory . -c -o fuzz.info
genhtml -f -o fuzz_html_files fuzz.info
...

© 2005, Independent Security Evaluators
www.securityevaluators.com

What’s up?

▪ That code coverage kinda sucked...

▪ Did we choose a bad initial file

▪ Let’s try some other files...
§ Choose 4 other PNG’s from the Internet
§ Fuzz them the same way
§ Collect data from each separately

© 2005, Independent Security Evaluators
www.securityevaluators.com

Results

0

3.75

7.50

11.25

15.00

File 1 File 2 File 3 File 4 File 5

Good file Fuzzed

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

So...

▪ Initial file can make a big difference
§ 50% more code coverage from file 2 than in

file 5

▪ What if we ran them all?

© 2005, Independent Security Evaluators
www.securityevaluators.com

The Sum is Greater Than the Parts

0

5

10

15

20

File 1 File 2 File 3 File 4 File 5 All

Good file Fuzzed

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

WTF is Going On?

▪ Each PNG contains certain elements that
requires some code to process

▪ Some PNG’s contain the same elements,
some contain different ones

▪ By fuzzing with a variety of different
PNG’s, you increase the chance of having
different elements which need processing

▪ Charlie’s Heuristic: Keep adding files until
the cumulative effect doesn’t increase

© 2005, Independent Security Evaluators
www.securityevaluators.com

Enter Generation-Based Fuzzers

▪ Since Generation-based fuzzers build test
cases not from valid data, but from the
specification, they should contain all
possible chunks

▪ This should make for a more thorough test

© 2005, Independent Security Evaluators
www.securityevaluators.com

SPIKE
//png.spk
// Charlie Miller

// Header - fixed.
s_binary("89504E470D0A1A0A");

// IHDRChunk
s_binary_block_size_word_bigendian("IHDR"); //size of data field
s_block_start("IHDRcrc");
 s_string("IHDR"); // type
 s_block_start("IHDR");
// The following becomes s_int_variable for variable stuff
// 1=BINARYBIGENDIAN, 3=ONEBYE
 s_push_int(0x1a, 1); // Width
 s_push_int(0x14, 1); // Height
 s_push_int(0x8, 3); // Bit Depth - should be 1,2,4,8,16, based
on colortype
 s_push_int(0x3, 3); // ColorType - should be 0,2,3,4,6
 s_binary("00 00"); // Compression || Filter - shall be 00 00
 s_push_int(0x0, 3); // Interlace - should be 0,1
 s_block_end("IHDR");
s_binary_block_crc_word_littleendian("IHDRcrc"); // crc of type and data
s_block_end("IHDRcrc");
...

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Generation Gap

0

7.5

15.0

22.5

30.0

File 1 File 2 File 3 File 4 File 5 All Gen

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Halting Problem (Again)

▪ During all this testing
§ Used mutation and generation based fuzzers
§ Generated over 200,000 test cases
§ Not one crash

▪ This is a common occurrence for difficult
or well audited target applications

▪ Raises the question: Now what?

▪ Answer later...
§ (Hint: has to do with code coverage)

© 2005, Independent Security Evaluators
www.securityevaluators.com

Code Coverage is...

▪ We’ve seen that code coverage is
§ A metric to find results about fuzzing
§ Helpful in figuring out general approaches to

fuzzing
§ Useful to find what code to focus fuzzing upon

▪ More importantly:
§ A way to improve fuzzing and find more bugs!
§ Helpful in figuring out when fuzzing is

“finished”

© 2005, Independent Security Evaluators
www.securityevaluators.com

Look

▪ Suppose we didn’t know anything about
PNG’s

▪ Could we have figured out what was
missing when we were fuzzing PNG with
the mutation based approach?

▪ Lets look through some of the lcov report

© 2005, Independent Security Evaluators
www.securityevaluators.com

Yup

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Code Coverage Improves Fuzzing

▪ Finding spots in the code which are not
covered can help with the generation of
new test cases

▪ Beware: covered code doesn’t necessarily
mean its “fuzzed”

▪ Code which has not been executed
definitely still needs to be fuzzed!

© 2005, Independent Security Evaluators
www.securityevaluators.com

Digression into Binary Code Coverage

▪ So far, we’ve seen how code coverage
can give useful information to help fuzzing

▪ We’ve seen how to use gcov and lcov to
do this

▪ The exact same data can be obtained on
Windows binaries using Pai Mei

▪ Pai Mei exists for Mac OS X and is being
ported to Linux

© 2005, Independent Security Evaluators
www.securityevaluators.com

Pai Mei

▪ A reverse engineering framework

▪ Integrates
§ PyDbg debugger
§ IDA Pro databases (via PIDA)
§ pGraph graphing

§ mySQL database

▪ Gives the ability to perform
reverse engineering tasks quickly
and repeatably

▪ http://paimei.openrce.org/

© 2005, Independent Security Evaluators
www.securityevaluators.com

Pstalker

▪ A Pai Mei Module

▪ Uses IDA Pro to get structure of binary

▪ Sets breakpoints at each basic block (or
function)

▪ Records and removes breakpoints that are
hit

▪ Allows for filtering of breakpoints

▪ Gathers code coverage for binaries

© 2005, Independent Security Evaluators
www.securityevaluators.com

Screenshot

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

One Hitch

▪ Can’t keep launching the process

▪ Have to have a way for it to keep loading
the fuzzed images

▪ Just use a meta-refresh tag and point the
browser at it

© 2005, Independent Security Evaluators
www.securityevaluators.com

The Fuzzing Website
#!/usr/bin/perl

$file = $ENV{'QUERY_STRING'};
$nextfile = $file + 1;
$server = $ENV{'SERVER_NAME'};
$script = $ENV{'SCRIPT_NAME'};
$url = "http://".$server.$script."?".$nextfile;
$pic = sprintf("bad-%d.gif", $nextfile);
$picurl = "http://".$server."/gif/".$pic;

print "Content-type: text/html

<head>
 Fuzz!
";
print " <meta http-equiv=\"refresh\" content=\"2;$url\">";
print " </head><body>";
print"</body>\n";
print "<Script Language=\"JavaScript\">";
print "window.open('$picurl');";
print "</Script>";

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Missed PNG Basic Blocks

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Using Pai Mei to Find the Code

▪ Do some general browsing in Safari under
Pai Mei
§ Avoid pages with PNG’s if possible
§ Stop when no more breakpoints are hit

▪ Record this code coverage in a tag

▪ Filter out on that tag and browse a bunch
of different PNG’s

▪ This will record those basic blocks used
only in PNG processing (mostly)

© 2005, Independent Security Evaluators
www.securityevaluators.com

This Results In:

▪ Total basic blocks: 123,325

▪ Hit during “general browsing”: 12,776

▪ Hit during PNG only surfing with filter on:
1094 (0.9% of total basic blocks)
§ This includes 87 functions (out of 7069)
§ 61 of these basic blocks are in the “main”

PNG processing function
§ Most of the others are in “chunk” specific

functions

© 2005, Independent Security Evaluators
www.securityevaluators.com

Where’s the Code?

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Pai Mei Limitations

▪ Pai Mei is only as good as what IDA give it
§ If IDA misidentifies data as code, bad things

happen!

▪ Some anti-debugging measures screw it up

▪ Have to know the DLL you’re interested in
§ Or load them all

▪ For large binaries, it can be slow to set all
the breakpoints
§ For this library, it takes a few minutes

© 2005, Independent Security Evaluators
www.securityevaluators.com

Increasing Code Coverage

▪ Lack of code coverage is a bad thing
§ Can’t find bugs in code you’re not executing

▪ How do you increase code coverage?

▪ Basically three ways
§ Manually
§ Dynamically using run time information
§ Automatically from static information

© 2005, Independent Security Evaluators
www.securityevaluators.com

Manually

▪ You can imagine
looking at the PNG
code and figuring
out how to get more
code coverage.

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Another Example

▪ Freeciv 2.0.9, a free multiplayer game similar
to Civilization

▪ Don’t ever play this on a computer you care
about

© 2005, Independent Security Evaluators
www.securityevaluators.com

Steps to Code Coverage

▪ Get the Windows binary - no cheating

▪ Disassemble it

▪ Dump the PIDA file

▪ Launch civserver.exe

▪ Attach with Pai Mei’s Pstalker

▪ Capture a netcat connection to it

▪ Filter this out (551 of 36,183 BB’s - 2%)

▪ Trace the fuzzing!

© 2005, Independent Security Evaluators
www.securityevaluators.com

GPF

▪ Great, general purpose mutation-based
fuzzer

▪ Works on packet captures

▪ Replays packets while injecting faults

▪ User can manually tell GPF about the
structure of the data in the packets
§ Aids in the anomaly injection

▪ Many modes of operation

© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzz FreeCiv

▪ Start up the game, play a bit

▪ Capture the packets to a file

▪ Convert the PCAP file to a GPF file

▪ Fire up GPF (main mode)
§ Main mode replaces some packets with

random data

./GPF -C freeciv_reg_game.pcap freeciv_reg_game.gpf

./GPF -G l ../freeciv_reg_game.gpf client <IP ADDRESS> 5555 ? TCP
kj3874jff 1000 0 + 0 + 00 01 09 43 close 0 1 auto none

© 2005, Independent Security Evaluators
www.securityevaluators.com

FreeCiv Sucks

▪ Not designed to be fuzzed :)

▪ Need to add a sleep to GPF so FreeCiv
can keep up

▪ Fuzz overnight...

▪ I recorded 96 functions during fuzzing
§ 614 / 36183 basic blocks

▪ Import data back to IDA

▪ Look for places to increase code coverage

© 2005, Independent Security Evaluators
www.securityevaluators.com

I See One!

▪ A big switch statement I only hit once

▪ Tracing back reveals this switch is
controlled by the third byte of the packet

© 2005, Independent Security Evaluators
www.securityevaluators.com

Back to GPF

▪ Up until now we’ve basically been sending
random data

▪ Using Pai Mei, we observe that the third byte
is important

▪ We modify GPF to make sure it changes the
third byte

▪ We’ve added a little structure to our random
data

./bin/GPF -G l freeciv_reg_game.gpf client <IP ADDRESS> 5555 ?
TCP kj3874jff 1000 0 + 2 2 00 01 255 41 finish 0 1 auto none

© 2005, Independent Security Evaluators
www.securityevaluators.com

Better Code Coverage

▪ 2383 basic blocks covered (after filtering)
§ Compare this to 614 with the first fuzz run
§ 4x improvement

▪ All cases taken in switch (as expected)

▪ However, still no bugs...

© 2005, Independent Security Evaluators
www.securityevaluators.com

Manual Method Explained

▪ Send mostly random data

▪ Examine code coverage to see what
structure in the data is important

▪ Send data which has some elements set
but some mostly random parts

▪ Rinse and Repeat

© 2005, Independent Security Evaluators
www.securityevaluators.com

Fuzzing Beyond the 3rd Byte

▪ This command replaces the bytes 3 through 10 of
each packet, one at a time, with all possible values
from 0 to 255

▪ This will ensure that all the cases in the switch
statement are hit and each case will have some
random data

▪ After a bit, CPU is pegged: Memory consumption
bug!

./GPF -G l ../freeciv_reg_game.gpf client <IP ADDRESS> 5555 ?
TCP kj3874jff 1000 0 + 2 10 00 01 255 41 finish 0 1 auto none

© 2005, Independent Security Evaluators
www.securityevaluators.com

Dig Deeper

▪ Following the methodology, fix the 3rd byte
to, say 0x47

▪ Send in random data to that part of the
program

▪ See what you missed

▪ Try to do better

© 2005, Independent Security Evaluators
www.securityevaluators.com

Missed Some Spots

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Heap Overflow

▪ Can get a heap overflow if you send the
following packet:

 27 2e | 2f | 0c | 00 00 13 94 | 41 41 41 41 41...
Length of Packet Length of memcpy Data

© 2005, Independent Security Evaluators
www.securityevaluators.com

Bugs In FreeCiv Aren’t a Huge Deal

▪ Fun for hacking your friends

▪ Also MetaServer is nice

© 2005, Independent Security Evaluators
www.securityevaluators.com

Dynamically Generating Better Test Cases

▪ Manually improving code coverage is, uh,
“time intensive”

▪ Need to automate the process

▪ Autodafe kinda does this

▪ But I prefer another of Jared Demott’s
tools....

© 2005, Independent Security Evaluators
www.securityevaluators.com

EFS

▪ Uses Pai Mei Pstalker to record code
coverage

▪ Uses Genetic Algorithms to generate new
test cases based on code coverage
feedback

© 2005, Independent Security Evaluators
www.securityevaluators.com

Genetic Algorithms

▪ Technique to find approximate solution to
optimization problems

▪ Inspired by evolutionary biology
§ Define fitness of an organism (test case)
§ Must define how to recombine two organisms
§ Must define how to mutate a single organism

▪ Lots more complexity but that is the basics

© 2005, Independent Security Evaluators
www.securityevaluators.com

GA example

▪ f(x) = -x * (x – 10000)
▪ Use “single point crossover” of binary

representation of numbers for
recombination

▪ Flip a bit 10% of the time for mutation

▪ Fitness is the value in the function

677 : 00000000000000000000001010100101
9931 : 00000000000000000010011011001011
--
651 : 00000000000000000000001010001011

© 2005, Independent Security Evaluators
www.securityevaluators.com

In Practice

▪ Running it for a few generations gives

▪ The optimum value is 5000

134
(1322044)

651
(6086199)

485
(4614775)

7653
(17961591)

1354
(11706684)

7654
(17956284)

134
(1322044)

7302
(19700796)

1354
(11706684)

7652
(17966896)

134
(1322044)

7653
(17961591)

7302
(19700796)

390
(3747900)

1350
(11677500)

134
(1322044)

390
(3747900)

7302
(19700796)

134
(1322044)

134
(1322044) 70 (695100)

134
(1322044)

1350
(11677500)

134
(1322044)

134
(1322044)

134
(1322044)

268
(2608176)

134
(1322044)

1350
(11677500)

134
(1322044)

134
(1322044)

2182
(17058876)

134
(1322044)

134
(1322044)

134
(1322044)

2182
(17058876)

1618
(13562076)

134
(1322044)

134
(1322044)

2316
(17796144)

134
(1322044)

1618
(13562076)

1612
(13521456)

132
(1302576)

2316
(17796144)

134
(1322044)

2322
(17828316)

1158
(10239036)

© 2005, Independent Security Evaluators
www.securityevaluators.com

GA Approaches the Solution

▪ Generation vs most fit individual

▪ Approaches the solution

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

EFS and GA’s

▪ Fitness function: How many functions
were covered by the test case (in reality a
more elaborate measure is used)

▪ For breeding, tends to choose the most fit
individuals

▪ Recombination: single point crossover that
respects “protocol tokens”

▪ Mutation: portions of data replaced with
fuzzing heuristics

© 2005, Independent Security Evaluators
www.securityevaluators.com

Obligatory Screenshot

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Running EFS

▪ Still needs a PIDA file

▪ Connect to database

▪ Add PIDA file to module list

▪ Enter pathname to application in Load/Attach
window

▪ Choose Connections->Fuzzer Connect
§ Hit “Listen”

▪ On Client
./GPF -E <IP ADDRESS> root <PASSWORD> 0 0 <IP ADDRESS> 31338 funcs client <IP ADDRESS>
5555 ? TCP 800000 20 low AUTO 4 25 Fixed 10 Fixed 10 Fixed 35 3 5 9 none none no

© 2005, Independent Security Evaluators
www.securityevaluators.com

What You See

Successfully played generation 0. Saving to mysqldb.
Processing Generation 0 ...
Done processing. Time to play and process: 100 total
evaluations in
1001 seconds.
10.01 sec/eval
That's 16.683 mins or 0.278 hrs.

Successfully played generation 1. Saving to mysqldb.
Processing Generation 1 ...
Done processing. Time to play and process: 200 total
evaluations in
1887 seconds.
9.44 sec/eval
That's 31.450 mins or 0.524 hrs.

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Does It Work?

▪ The light blue line indicates the most fit pool of testcases

▪ Code coverage is (slowly) improving

© 2005, Independent Security Evaluators
www.securityevaluators.com

Caveats

▪ Still experimental

▪ GA’s can get stuck in “local maxima”

▪ GA’s have so many parameters
(population size, initial population,
mutation percentage, etc), hard to
optimize

© 2005, Independent Security Evaluators
www.securityevaluators.com

Statically Generating Code Coverage

▪ GA’s attempt to provide an approximating
solution to a difficult problem

▪ We have the binary, we have the control
flow graph, we have the disassembly...

▪ What if we “solve” the problem exactly?

© 2005, Independent Security Evaluators
www.securityevaluators.com

Existing Work

▪ Microsoft Research has a tool that generates
code coverage maximizing test cases from
binaries
§ ftp://ftp.research.microsoft.com/pub/tr/

TR-2007-58.pdf

▪ Catchcov (built on Valgrind) does something
similar to try to find integer overflows

▪ Greg Hoglund has something which tries to do
this

▪ Nothing freely available

© 2005, Independent Security Evaluators
www.securityevaluators.com

General Idea

▪ Identify where user supplied data enters
the program

▪ Data needs to be traced (symbolically) and
branch point’s dependence on initial data
recorded

▪ These equations need to be solved, i.e.
inputs need to be generated which can go
down either branch at each branch point.

© 2005, Independent Security Evaluators
www.securityevaluators.com

Example

▪ Input comes in through argv[1]

▪ test() takes an this value as an int

▪ 3 possible paths through the program
int test(int x){
 if(x < 10){
 if(x > 0){
 return 1;
 }
 }
 return 0;
}

int main(int argc, char *argv[]){
 int x = atoi(argv[1]);
 return test(x);
}

© 2005, Independent Security Evaluators
www.securityevaluators.com

Tracing the Data

▪ Use Valgrind or PyEmu?

▪ In this trivial example, we’ll just do it by
hand.

▪ The constraints would look something like

▪ In real life, there would be thousands of
such constraints

x >= 10
0 < x < 10
x <= 0

© 2005, Independent Security Evaluators
www.securityevaluators.com

Solve the Constraints

▪ Can use a Boolean satisfiability solver (SAT)
▪ One such solver is STP

§ Constraints expressed as bit vector variables

§ Bitwise operators like AND, OR, XOR

§ Arithmetic functions like +, =, *

§ Predicates like =, <, >

© 2005, Independent Security Evaluators
www.securityevaluators.com

In the STP Language

x : BITVECTOR(32);
QUERY(BVLT(x,0hex0000000a));

x : BITVECTOR(32);
ASSERT(BVLT(x,0hex0000000a));
QUERY(BVGT(x,0hex00000000));

x : BITVECTOR(32);
ASSERT(BVLT(x,0hex0000000a));
QUERY(BVLE(x,0hex00000000));

http://www.securityevaluators.com
http://www.securityevaluators.com

© 2005, Independent Security Evaluators
www.securityevaluators.com

Solving These Gives

▪ This gives the test cases x={12, 0, 4}

▪ These give maximal code coverage

$./stp -p q1
Invalid.
ASSERT(x = 0hex0000000C);
$./stp -p q2
Invalid.
ASSERT(x = 0hex00000000);
$./stp -p q3
Invalid.
ASSERT(x = 0hex00000004);

© 2005, Independent Security Evaluators
www.securityevaluators.com

Using This Technique

▪ Very sophisticated constraints, such as
those that found the Freeciv bug, could be
solved (sometimes)

▪ Optimum test cases can be generated
without executing the application

▪ Combining dynamic and static approaches
can optimize fuzzing

© 2005, Independent Security Evaluators
www.securityevaluators.com

Conclusion

▪ Fuzzing is easy, until you really try it

▪ Code coverage is a tool that can be used
to try to measure and improve fuzzing

▪ You won’t find any bugs in code you
haven’t tested

▪ Increasing code coverage can be difficult
and time consuming but new tools are
coming to make this easier

© 2005, Independent Security Evaluators
www.securityevaluators.com

References

▪ http://en.wikipedia.org/wiki/Fuzz_testing

▪ Make My Day: Just Run A Web Scanner, Toshinari Kureha, BH-EU-07

▪ How Smart is Intelligent Fuzzing - or - How Stupid is Dumb Fuzzing, Charlie
MIller, DEFCON 2007

▪ Robustness Testing Code Coverage Analysis, Teno Rontti, Masters Thesis

▪ How to Misuse Code Coverage, Brian Marick, http://www.testing.com/
writings/coverage.pdf

▪ ProxyFuzz: http://theartoffuzzing.com/joomla/index.php?
option=com_content&task=view&id=21&Itemid=40

▪ STP: http://theory.stanford.edu/~vganesh/stp.html

▪ SPIKE: http://www.immunitysec.com/downloads/SPIKE2.9.tgz

▪ lcov: http://ltp.sourceforge.net/coverage/lcov.php

▪ GPF and EFS: http://www.vdalabs.com/tools/efs_gpf.html

http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Fuzz_testing
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theory.stanford.edu/~vganesh/stp.html
http://theory.stanford.edu/~vganesh/stp.html
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
http://www.vdalabs.com/tools/efs_gpf.html
http://www.vdalabs.com/tools/efs_gpf.html

© 2005, Independent Security Evaluators
www.securityevaluators.com

Questions?

▪ Please contact me at:
cmiller@securityevaluators.com

mailto:cmiller@securityevaulators.com
mailto:cmiller@securityevaulators.com

